Advertisement

Folia Geobotanica

, Volume 36, Issue 2, pp 113–129 | Cite as

A biome classification of China based on plant functional types and the BIOME3 model

Article

Abstract

A biome classification for China was established based on plant functional types (PFTs) using the BIOME3 model to include 16 biomes. In the eastern part of China, the PFTs of trees determine mostly the physiognomy of landscape. Biomes range from boreal deciduous coniferous forest/woodland, boreal mixed forest/woodland, temperate mixed forest, temperate broad-leaved deciduous forest, warm-temperate broad-leaved evergreen/mixed forest, warm-temperate/cool-temperate evergreen coniferous forest, xeric woodland/scrub, to tropical seasonal and rain forest, and tropical deciduous forest from north to south. In the northern and western part of China, grass is the dominant PFT. From northeast to west and southwest the biomes range from moist savannas, tall grassland, short grassland, dry savannas, arid shrubland/steppe, desert, to alpine tundra/ice/polar desert. Comparisons between the classification introduced here and the four classifications which were established over the past two decades, i.e. the vegetation classification, the vegetation division, the physical ecoregion, and the initial biome classification have showed that the different aims of biome classifications have resulted in different biome schemes each with its own unique characteristics and disadvantages for global change study. The new biome classification relies not only on climatic variables, but also on soil factor, vegetation functional variables, ecophysiological parameters and competition among the PFTs. It is a comprehensive classification that using multivariables better expresses the vegetation distribution and can be compared with world biome classifications. It can be easily used in the response study of Chinese biomes to global change, regionally and globally.

Keywords

Desert Ecoregion Environmental attributes Forest Global change Grassland Vegetation classification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams J.M. (1996): Towards a better vegetation scheme for global mapping and monitoring.Global Ecol. Biogeogr. Lett. 5: 3–6.CrossRefGoogle Scholar
  2. Bailey R.G. (1989):Ecoregions of the continents. Department of Agriculture, Forest Service, Washington.Google Scholar
  3. Beerling D.J., Woodward F.I., Lomas M. &Jenkins A.J. (1997): Testing the responses of a dynamic global vegetation model to environmental change: a comparison of observations and predictions.Global Ecol. Biogeogr. Lett. 6: 439–450.CrossRefGoogle Scholar
  4. Box E.O. (1995): Factors determining distributions of tree species and plant functional types.Vegetatio 121: 101–116.CrossRefGoogle Scholar
  5. Box E.O. (1996): Plant functional types and climate at the global scale.J. Veg. Sci. 7: 309–320.CrossRefGoogle Scholar
  6. Chinese Central Meteorological Office (1984):Climatological data of China. China Meteorology Press, Beijing.Google Scholar
  7. Editorial Committee for Vegetation of China (1980):Vegetation of China. Science Press, Beijing.Google Scholar
  8. Foley J.A., Prentice I.C., Ramankutty N., Levis S., Pollard D., Sitch S. &Haxeltine A. (1996): An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics.Global Biogeochem. Cycles 10: 603–628.CrossRefGoogle Scholar
  9. Haxeltine A. &Prentice I.C. (1996): BIOME3: An equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability and competition among plant functional types.Global Biogeochem. Cycles 10: 693–709.CrossRefGoogle Scholar
  10. Haxeltine A., Prentice I.C. &Creswell I.D. (1996): A coupled carbon and water flux model to predict vegetation structure.J. Veg. Sci. 7: 651–666.CrossRefGoogle Scholar
  11. Holdridge L R. (1967):Life zone ecology. Tropical Science Center, San Jose.Google Scholar
  12. Hou X.Y., Sun S.Z., Zhang J.W., He M.G., Wang Y.F., Kong D.Z. &Wang S.Q. (1982):Vegetation map of the People’s Republic of China. Map Press of China, Beijing.Google Scholar
  13. Hou X.Y. (1988): Physical ecoregion of China and mega-agricultural development.Bull. Chin. Acad. Sci. 1: 28–37, 2: 137–152.Google Scholar
  14. Houghton J.T., Meira Filho L.G., Callender B.A., Harris N., Kattenberg A. &Maskell K. (1996):Climate change 1995: the science of climate change. Cambridge University Press, New York.Google Scholar
  15. Matthews E. (1983): Global vegetation and land use: new high-resolution data bases for climate studies.J. Climate Appl. Meteorol. 22: 474–487.CrossRefGoogle Scholar
  16. Melillo J., Prentice I.C., Schulze E.-D., Farquhar G. &Sala O. (1996): Terrestrial biotic responses to environmental change and feedbacks to climate. In:Houghton J.T., Meira Filho L.G., Callender B.A., Harris N., Kattenberg A. &Maskell K. (eds.),Climate change 1995: the science of climate change, Cambridge University Press, New York, pp. 445–482.Google Scholar
  17. Neilson R.P. (1995): A model for predicting continental scale vegetation distribution and water balance.Ecol. Appl. 5: 362–386.CrossRefGoogle Scholar
  18. Ni J. (2000): A simulation of biomes on the Tibetan Plateau and their responses to global climate change.Mountain Res. Developm. 20: 80–89.CrossRefGoogle Scholar
  19. Ni J., Chen Z.X., Dong M., Chen X.D. &Zhang X.S. (1998): An ecogeographical regionalization for biodiversity in China.Acta Bot. Sin. 40: 370–382.Google Scholar
  20. Ni J., Sykes M.T., Prentice I.C. &Cramer W. (2000): Modelling the vegetation of China using the process-based equilibrium terrestrial biosphere model BIOME3.Global Ecol. Biogeogr. 9: 463–479.CrossRefGoogle Scholar
  21. Olson J.S., Watts J.A. &Allison L.J. (1983):Carbon in live vegetation of major world ecosystems. Oak Ridge National Laboratory, Oak Ridge.Google Scholar
  22. Prentice I.C., Cramer W., Harrison S.P., Leemans R., Monserud R.A. &Solomon A.M. (1992): A global biome model based on plant physiology and dominance, soil properties and climate.J. Biogeogr. 19: 117–134.CrossRefGoogle Scholar
  23. Prentice I.C. &Webb III T. (1998): BIOME 6000: reconstructing global mid-Holocene vegetation patterns from palaeoecological records.J. Biogeogr. 25: 997–1005.CrossRefGoogle Scholar
  24. Schultz J. (1995):The ecozones of the world: the ecological divisions of the geosphere. Springer-Verlag, Berlin.Google Scholar
  25. Smith T.M., Shugart H.H. &Woodward F.I. (1997):Plant functional types: their relevance to ecosystem properties and global change. Cambridge University Press, Cambridge.Google Scholar
  26. Stolz J.F., Botkin D.B. &Dastoor M.N. (1989): The integral biosphere. In:Rambler M.B., Margulis I. &Fester R. (eds.),Global ecology: towards a science of the biosphere, Academic Press, San Diego, pp. 36–37.Google Scholar
  27. Sykes M.T., Prentice I.C. &Laarif F. (1999): Quantifying the impact of global climate change on potential natural vegetation.Climatic Change 41: 37–52.CrossRefGoogle Scholar
  28. Udvardy M.D.F. (1975):A classification of the biogeographical provinces of the world. IUCN Occasional Paper No. 18, IUCN, Morges.Google Scholar
  29. Woodward F.I. &Williams B.G. (1987): Climate and distribution at global and local scales.Vegetatio 69: 189–197.CrossRefGoogle Scholar
  30. Woodward F.I. &Rochefort L. (1991): Sensitivity analysis of vegetation diversity to environmental change.Global Ecol. Biogeogr. Lett. 1: 7–23.CrossRefGoogle Scholar
  31. Woodward F.I., Smith T.M. &Emanuel W.R. (1995): A global land primary productivity and phytogeography model.Global Biogeochem. Cycles 9: 471–490.CrossRefGoogle Scholar
  32. Woodward F.I. &Cramer W. (1996): Plant functional types and climatic change: introduction.J. Veg. Sci. 7: 306–308.CrossRefGoogle Scholar
  33. Xiong Y. &Li Q.K. (1987):Soils of China. Ed. 2. Science Press, Beijing.Google Scholar
  34. Zhang X.S. &Yang D.A. (1990): The radiative dryness index and potential productivity of vegetation in China.J. Environm. Sci. (China) 2: 95–109.Google Scholar
  35. Zhang X.S. &Yang D.A. (1993): A study on climate-vegetation interaction in China: the ecological model for global change.Coenoses 8: 105–119.Google Scholar

Copyright information

© Institute of Botany, Academy of Sciences of the Czech Republic 2001

Authors and Affiliations

  • Jian Ni
    • 1
  1. 1.Laboratory of Quantitative Vegetation Ecology, Institute of BotanyChinese Academy of SciencesBeijingChina

Personalised recommendations