Skip to main content
Log in

Local richness-species pool ratio: A consequence of the species-area relationship

  • Published:
Folia Geobotanica Aims and scope Submit manuscript

Abstract

A constant ratio between species richness estimated at the local and regional scale is interpreted as a proof of quasi-neutral unsaturated communities. Based on Zobel’s model of plant community (Zobel,Folia Geobot. 36: 3–8, 2001) we tested the methodology of the species-pool concept by comparing the saturated and unsaturated communities generated by spatially-explicit mechanistic simulations with known assembly rules. Tests show that local-regional species plots can be applied to distinguish saturated vs. unsaturated communities, however, the outcome of tests, i.e. the relationship between local and regional richness depends on the size of the areas compared. Independently from the mechanisms controlling diversity, trivial saturation will appear if one of the scales is either too small or too broad because species-area curves are bound at these extreme scales. Similarly, trivial unsaturaton will appear if the two scales compared are close to each other. The application of species-area curves is useful because they help to find scales for non-trivial relationships.

Field tests reporting quasi-neutrality and unsaturated plant communities were performed at the intermediate scales of the corresponding species-area curves, and they were estimated from heterogeneous samples. Therefore, this field evidence might be biased by scaling artefacts. We propose to reanalyze the field evidence with solid scaling conventions and to restrict the concept of quasi-neutrality to subordinated functional groups based on the following hypotheses: (1) neutrality will appear within subordinated guilds as a consequence of the hierarchical structure of plant communities; (2) the lower a guild in the hierarchy the higher neutrality of within-layer processes detected; (3) quasi-neutrality found at the community level is not a proof of community-level neutrality but it is due to the higher number of subordinated species in the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arrhenius O. (1921): Species and area.J. Ecol. 9: 95–99.

    Article  Google Scholar 

  • Bartha S. (1992): Preliminary scaling for multi-species coalitions in primary succession.Abstr. Bot. 16: 31–41.

    Google Scholar 

  • Bartha S., Collins S.L., Glenn S.M. &Kertész M. (1995a): Fine-scale spatial organization of tallgrass prairie vegetation along a topographic gradient.Folia Geobot. Phytotax. 30: 169–184.

    Google Scholar 

  • Bartha S., Czárán T. &Oborny B. (1995b): Spatial constraints masking community assembly rules: a simulation study.Folia Geobot. Phytotax. 30: 471–482.

    Google Scholar 

  • Bartha S., Czárán T. &Podani J. (1998): Exploring plant community dynamics in abstract coenostate spaces.Abstr. Bot. 22: 49–66.

    Google Scholar 

  • Bartha S., Pickett S.T.A. &Cadenasso M.L. (2000): Limitations to species coexistence in secondary succession. In:White P.S., Mucina L., Lepš J. &van der Marrel E. (eds.),Vegetation science in retrospect and perspective, Proceedings 41. IAVS Symposium Uppsala, Opulus Press, Uppsala, pp. 55–58.

    Google Scholar 

  • Burke I.C., Lauenroth W.K., Vinton M.A., Hook P.B., Kelly R.H., Epstein H.E., Aguiar M.R., Robles M.D., Aguilera M.O., Murphy K.L. &Gill R.A. (1998): Plant-soil interactions in temperate grasslands.Biogeochemistry 42: 121–143.

    Article  Google Scholar 

  • Caley M.J. &Schluter D. (1997): The relationship between local and regional diversity.Ecology 78: 70–80.

    Article  Google Scholar 

  • Campetella G., Canullo R. &Bartha S. (1999): Fine-scale spatial pattern analysis of the herb layer of woodland vegetation using information theory.Pl. Biosystems, Giorn. Bot. Ital. 133: 277–288.

    Google Scholar 

  • Cornell H. &Lawton J. (1992): Species interactions, local and regional processes, and limits to the richness of ecological communities: a theoretical perspective.J. Anim. Ecol. 61: 1–12.

    Article  Google Scholar 

  • Cornell H.V. &Karlson R.H. (1997): Local and regional processes as controls of species richness. In:Tilman D. &Kareiva P. (eds.),Spatial ecology, The role of space in population dynamics and interspecific interactions, Princeton University Press, Princeton, pp. 250–268.

    Google Scholar 

  • Cresswell J.E., Vidal-Martinez V.M. &Crichton N.J. (1995): The investigation of saturation in the species richness of communities: some comments on methodology.Oikos 72: 301–304.

    Article  Google Scholar 

  • Czárán T. (1989): Coexistence of competing populations along an environmental gradient: a simulations study.Coenoses 2: 113–120.

    Google Scholar 

  • Czárán T. (1998).Spatiotemporal models of population and community dynamics. Chapman & Hall, New York.

    Google Scholar 

  • Czárán T. &Bartha S. (1989): The effect of spatial pattern on community dynamics: a comparison of simulated and field data.Vegetatio 83: 229–239.

    Article  Google Scholar 

  • Czárán T. &Bartha S. (1992): Spatiotemporal dynamics models of plant populations and communities.Trends Ecol. Evol. 7: 38–42.

    Article  Google Scholar 

  • Durett R. &Levin S.A. (1994): The importance of being discrete (and spatial).Theor. Popul. Biol. 46: 363–394.

    Article  Google Scholar 

  • Eriksson O. (1993): The species-pool hypothesis and plant community diversity.Oikos 68: 371–374.

    Article  Google Scholar 

  • Gosz J., Peters D., Kertész M., Kovács-Láng E., Kröel-Dulay GY &Bartha S. (2000): Organization of grasslands along ecological gradients: US-Hungarian LTER Grassland cooperation. InLajtha K. &Vanderbilt K. (eds.),Cooperation in long term ecological research in central and eastern Europe, Proceedings of the ILTER Regional Workshop, 22–25 June, 1999, Budapest, Hungary, Oregon State University, Corvallis, pp. 67–76.

    Google Scholar 

  • Gotelli N.J. &Graves G.R. (1996):Null models in ecology. Smithsonian Institution Press, Washington

    Google Scholar 

  • Hara T. (1993): Effects of variation in individual growth on plant species coexistence.J. Veg. Sci. 4: 409–416.

    Article  Google Scholar 

  • Herbent T. (1995): Founder and dominance control: neglected concepts in the community dynamics of clonal plants.Abstr. Bot. 19: 3–10.

    Google Scholar 

  • Herben T. (2000): Correlation between richness per unit area and the species pool cannot be used to demonstrate the species pool effect.J. Veg. Sci. 11: 123–126.

    Article  Google Scholar 

  • Juhász-Nagy P. (1967): On some “characteristic area” of plant community stands. In:Proc. Colloq. Inf. Theory, Bolyai Math. Soc., Debrecen, pp. 269–282.

    Google Scholar 

  • Juhász-Nagy P. (1984): Spatial dependence of plant populations. Part 2. A family of new models.Acta Bot. Acad. Sci. Hung. 30: 363–402.

    Google Scholar 

  • Juhász-Nagy P. (1993): Notes on compositional diversity.Hydrobiologia 249: 173–182.

    Article  Google Scholar 

  • Juhäsz-Nagy P. &Podani J. (1983): Information theory methods for the study of spatial processes and succession.Vegetatio 51: 129–140.

    Article  Google Scholar 

  • Lawton J.H. (1999): Are there general laws in ecology?Oikos 84: 177–192.

    Article  Google Scholar 

  • Mucina L. &Bartha S. (1999): Variance in species richness and guild proportionality in two contrasting dry grassland communities.Biologia (Bratislava) 54: 67–75.

    Google Scholar 

  • Pacala S.W. (1986): Neighborhood models of plant population dynamics, 4. single-species and multispecies models of annuals with dormant seeds.Amer. Naturalist 128: 859–878.

    Article  Google Scholar 

  • Palmer M.W. &White P.S. (1994): On the existence of ecological communities.J. Veg. Sci. 5: 279–282.

    Article  Google Scholar 

  • Palmer M.W. (2001): Extending the quasi-neutral concept.Folia Geobot. 36: 25–33.

    Article  Google Scholar 

  • Pärtel M., Zolbel M., Zobel K. &van der Marrel E. (1996): The species pool and its relation to species richness: evidence from Estonian plant communities.Oikos 75: 111–117.

    Article  Google Scholar 

  • Pickett S.T.A., Parker V.T. &Fiedler P. (1992): The new paradigm in ecology: Implications for conservation biology above the species level. In:Fiedler P. &Jain S. (eds.),Conservation biology: the theory and practice of nature conservation, preservation, and management, Chapman & Hall, Longon, pp. 65–88.

    Google Scholar 

  • Ricklefs R.E. (1987): Community diversity: relative roles of local and regional processes.Science 235: 167–171.

    Article  PubMed  Google Scholar 

  • Rydin H. &Barber K.E. (2001): Long-term and fine-scale coexistence of closely related species.Folia Geobot. 36: 53–61.

    Google Scholar 

  • Silvertown J., Holtier S., Johnson J. &Dale P. (1992): Cellular automation models of interspecific competition for space — the effect of pattern on process.J. Ecol. 80: 527–534.

    Article  Google Scholar 

  • Srivastava D. (1999): Using local-regional richness plots to test species saturation: pitfalls and potentials.J. Anim. Ecol. 68: 1–16.

    Article  Google Scholar 

  • Szollát Gy. &Bartha S. (1991): Pattern analyses of dolomite grassland communities using information theory models.Abstr. Bot. 15: 47–60.

    Google Scholar 

  • Tilman D. (1988):Plant strategies and the dynamics and structure of plant community. Princeton Univ. Press, Princeton.

    Google Scholar 

  • Wilson J.B. (1999): Assembly rules in plant communities. In:Weiher E. &Keddy P. (eds.),Ecological assembly rules, Perspectives, advances, retreats, Cambridge University Press, Cambridge, pp. 130–164.

    Google Scholar 

  • Wilson J.B. &Gitay H. (1995): Limitation to species coexistence: evidence for competition from field observations, using a patch model.J. Veg. Sci. 6: 369–376.

    Article  Google Scholar 

  • Winkler E. &Schmid B. (1995): Clonal strategies of herbaceous plant species: a simulation study on population growth and competition.Abstr. Bot. 19: 17–28.

    Google Scholar 

  • Wu J. &Loucks O.L. (1995): From balance of nature to hierarchical patch dynamics: a paradigm shift in ecology.Quart. Rev. Biol. 70: 439–466.

    Article  Google Scholar 

  • Yodzis P. (1978):Competition for space and the structure of ecological communities. Lecture Notes in Biomathematics 25, Springer, Berlin.

    Google Scholar 

  • Zobel M. (1997): The relative role of species pools in determining plant species richness: an alternative explanation of species coexistence?Trends Ecol. Evol. 12: 266–269.

    Article  Google Scholar 

  • Zobel K. (2001): On the species-pool hypothesis and on the quasi-neutral concept of plant community diversity.Folia Geobot. 36: 3–8.

    Google Scholar 

  • Zobel K. &Liira J. (1997): A scale-independent approach to the richness vs. biomass relationship in ground-layer plant communities.Oikos 80: 325–332.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sándor Bartha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartha, S., Ittzés, P. Local richness-species pool ratio: A consequence of the species-area relationship. Folia Geobot 36, 9–23 (2001). https://doi.org/10.1007/BF02803134

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02803134

Keywords

Navigation