Advertisement

Folia Geobotanica

, 35:273 | Cite as

Dynamics of bog-pine-dominated mires in the Jura Mountains, Switzerland: A tentative scheme based on synusial phytosociology

  • François Freléchoux
  • Alexandre Buttler
  • François Gillet
Article

Abstract

A description of the bog-pine (Pinus uncinata var.rotundata) dominated vegetation of uncut oligotrophic mires affected by drainage is given. Surveys were carried out at 17 sites along the Jura Mountains (Switzerland and France) in 1993, 1994, and 1995. Raised bogs of the Jura are generally of small size, and most vegetation changes in them have occurred as a result of the indirect impact of peat cutting. This activity led to the peat drying out and to colonization by trees, in particular by bog-pines.

Integrated synusial phytosociology was used to describe the vegetation where bog-pine, spruce, and birch occur. Two spatio-temporal levels of organization were considered: the synusia and the phytocoenosis. At the phytocoenosis level, four vegetation types representing bog-pine stands of uncut and deep oligotrophic peats are described with their constitutive synusial composition. They represent: (1) phytocoenoses developing in the open, wet central parts of the bogs, where trees are scattered and of small size, (2) phytocoenoses with layered tree stands of medium size and with a higher density, and (3) phytocoenoses with tall trees, developing generally near the edge of the bogs or close to peat cuttings. A generalized qualitative dynamic model of the vegetation in relation to the development of bog-pine trees was developed. It shows the spatial and temporal organization of the constituent synusiae, as well as other underlying hypothetical functional relations.

The different bog-pine-dominated vegetation types described in this study appear to have coexisted since the origin of the Jura bogs as a result of local polyclimaxes induced by differential waterlogged situations. They probably all belong to the same (primary) successional series, but have been affected by both autogenic and allogenic processes. During the development of the bogs the balance between the different communities changed. In particular, the vegetation types with dense and tall pine trees have undergone a drastic expansion since the Jura bogs were first affected by drainage.

Keywords

Drainage Peat bog Pinus uncinata var.rotundata Synusial phytosociology Vegetation dynamics 

References

  1. Andrus R.E., Wagner D.J. &Titus J.E. (1983): Vertical zonation ofSphagnum mosses along hummock-hollow gradients.Canad. J. Bot. 61: 3128–3139.CrossRefGoogle Scholar
  2. Barkman J.J. (1973): Synusial approaches to classification. In:Whittaker R.H. (ed.),Classification of plant communities, Junk, The Hague, pp. 435–491.Google Scholar
  3. Bégeot C. &Richard H. (1996): L’origine récente des peuplements de Pin à crochets (Pinus uncinata Müller exMirbel) sur la tourbière de Frasne et exploitation de la tourbe dans le Jura.Acta Bot. Gallica 143: 47–53.Google Scholar
  4. Buttler A., Cornali P. &Richard J.-L. (1983): La tourbière des Pontins sur St-Imier.Matér. Levé Géobot. Suisse 59: 1–79.Google Scholar
  5. Braun-Blanquet J. (1964):Pflanzensoziologie. Grundzüge der Vegetationskunde. Ed. 3. Springer Verlag, Wien.Google Scholar
  6. Chastain A. (1952): Recherches écologiques et floristiques sur le “Pinetum” de la Haute-tourbière de la Vraconnaz (Jura helvétique vaudois).Recueil Trav. Inst. Bot. Univ. Montpellier, Supplément 2: 1–176.Google Scholar
  7. Corley M.F.V., Crundwell A.C., Düll R., Hill M.O. &Smith A.J.E. (1981): Mosses of Europe and the Azores: an annotated list of species, with synonyms from the recent literature.J. Bryol. 11: 609–689.Google Scholar
  8. Dang Q.L. &Lieffers V.J. (1989): Assessment of patterns of response of tree ring growth of black spruce following peatland drainage.Canad. J. Forest Res. 19: 924–929.Google Scholar
  9. Dierssen K. (1977): KlasseOxycocco-Sphagnetea. In:Oberdorfer E. (ed.),Süddeutsche Pflanzengesellschaften 1, Ed. 2. Gustav Fischer Verlag, Stuttgart., pp. 273–292.Google Scholar
  10. Dierssen K. (1980): Some aspects of the classification of oligotrophic and mesotrophic mire communities in Europe.Colloq. Phytosoc. 7: 399–423.Google Scholar
  11. Ellenberg H. (1978):Vegetation Mitteleuropas mit den Alpen in ökologischer Sicht. Ed. 2. Eugen Ulmer, Stuttgart.Google Scholar
  12. Ellenberg H., Weber H.E., Düll R., Wirth V., Werner W. &Paulissen D. (1991): Zeigerwerte von Pflanzen in Mitteleuropa.Scripta Geobot. 18: 1–258.Google Scholar
  13. Feldmeyer-Christe E. (1990): Etude phytoécologique des tourbières des Franches-Montagnes (cantons du Jura et de Berne, Suisse).Matér. Levé Géobot. Suisse, 66: 1–163.Google Scholar
  14. Freléchoux F. (1997):Etude du boisement des tourbières hautes de la chaîne jurassienne: typologie et dynamique de la végétation — approche dendroécologique des peuplements arborescents. PhD. Thesis, Université de Neuchâtel, Neuchâtel.Google Scholar
  15. Freléchoux F., Buttler A., Schweingruber F.H. &Gobat J.-M. (2000): Stand structure, invasion, and growth dynamics of bog-pine (Pinus uncinata var.rotundata) in relation to peat cutting and drainage in the Jura Mountains, Switzerland.Canad. J. Forest Res. 30: 1114–1126.CrossRefGoogle Scholar
  16. Giertych M. (1967): Generative reproduction. In:Białobok S. &Żelawski W. (eds.),Outline of physiology of Scots pine, PWN, Poznań, pp. 303–330.Google Scholar
  17. Gillet F., De Foucault B. &Julve P. (1991): La phytosociologie synusiale intégrée: objets et concepts.Candollea 46: 315–340.Google Scholar
  18. Gillet F. &Gallandat J.D. (1996): Integrated synusial phytosociology: some notes on a new multiscalar approach to vegetation analysis.J. Veg. Sci. 7: 13–18.CrossRefGoogle Scholar
  19. Grolle R. (1983): Hepatics of Europe including the Azores: an annotated list of species, with synonyms from the recent literature.J. Bryol. 12: 403–459.Google Scholar
  20. Grünig P.E. (1955): Über den Einfluss der Entwässerung auf die Flachmoorvegetation und auf den Zuwachs der Fichte und Bergföhre im Flyschgebiet der Voralpen.Mitt. Schweiz. Anst. Forstl. Versuchswesen 31: 419–476.Google Scholar
  21. Grünig A., Vetterli L. &Wildi O. (1984):Inventaire des hauts-marais et marais de transition de Suisse. Swiss Federal Institute for Forest, Snow and Landscape, Birmensdorf.Google Scholar
  22. Grünig A., Vetterli L. &Wildi O. (1986):Les hauts-marais et marais de transition de Suisse. Report of the Swiss Federal Institute for Forest, Snow and Landscape, Birmensdorf.Google Scholar
  23. Guinochet M. (1955):Carte des groupements végétaux de la France. Pontarlier 5–6, 1/20.000. CNRS, Paris.Google Scholar
  24. Guinochet M. (1973):Phytosociologie. Masson, Paris.Google Scholar
  25. Krisaï R. (1960): Pflanzengesellschaften aus dem Ibmer Moor.Jahrb. Oberösterr. Musealvereins 105: 155–208.Google Scholar
  26. Landolt E. (1977): Ökologische Zeigerwerte zur Schweizer Flora.Veröff. Geobot. Inst. ETH, Stiftung Rübel Zürich 64: 1–208.Google Scholar
  27. Lieffers V.J. &Rothwell R.L. (1986): Effects of depth of water table and substrate temperature on root and top growth ofPicea mariana andLarix laricina seedlings.Canad. J. Forest Res. 16: 1201–1206.CrossRefGoogle Scholar
  28. Lieffers V.J. &Rothwell R.L. (1987): Rooting of peatland black spruce and tamarack in relation to depth of water table.Canad. J. Bot. 65: 817–821.Google Scholar
  29. McNally A. &Doyle G.J. (1984a): A study of sub-fossil pine layers in a raised bog complexe in the Irish midlands: 1. Palaeowoodland extent and dynamics.Proc. Roy. Irish Acad. Sect. B 84 (6–7): 57–70.Google Scholar
  30. McNally A. &Doyle G.J. (1984b): A study of sub-fossil pine layers in a raised bog complexe in the Irish midlands: 2. Seral relationships and floristics.Proc. Roy. Irish Acad. Sect. B 84 (6–7): 71–81.Google Scholar
  31. Matthey W. (1964): Observations écologiques dans la tourbière du Cachot.Bull. Soc. Neuchâteloise Sci. Nat. 87: 103–133.Google Scholar
  32. Matthey W. (1971): Ecologie des insectes aquatiques d’une tourbière du Haut-Jura.Rev. Suisse Zool. 78: 367–536.Google Scholar
  33. Mitchell E.A.D., van der Knaap W.O., van Leeuwen J.F.N., Buttler A., Warner B.G. & Gobat J.-M. (in press): The palaeoecological history of Praz-Rodet bog (Swiss Jura) based on pollen, plant macrofossils and testateAmoeba (Protozoa). The Holocene.Google Scholar
  34. Moore J.J. (1968):A classification of the bogs and wet heaths of northern Europe. Pflanzensoziologische Systematik, Den Haag, pp. 306–320.Google Scholar
  35. Munaut A.V. &Casparie W.A. (1971): Etude dendrochronologique desPinus silvestris subfossiles provenant de la tourbière d’Emmen (Drenthe, Pays-Bas).Rev. Palaeobot. Palynol. 11: 201–226.CrossRefGoogle Scholar
  36. Müller-Dombois D. (1964): Effects of depth of water table on heigh growth of tree seedlings in a greenhouse.Forest Sci. 10: 306–316.Google Scholar
  37. Neuhäusl R. (1969): Systematisch-soziologische Stellung der baumreichen Hochmoorgesellschaften Europas.Vegetatio 18: 104–121.CrossRefGoogle Scholar
  38. Neuhäusl R. (1972): Subkontinentale Hochmoore und ihre Vegetation.Stud. Českoslov. Akad. Věd 13: 1–121.Google Scholar
  39. Neuhäusl R. (1992): Primary and secondary succession on wooded peat-bogs.Acta Soc. Bot. Poloniae 61: 89–102.Google Scholar
  40. Oberdorfer E. (1957): Süddeutsche Pflanzengesellschaften.Pflanzensoziologie 10: 1–564.Google Scholar
  41. Oberdorfer E. (ed.) (1977): Süddeutsche Pflanzengesellschaften 1. Ed. 2. G. Fischer Verlag, Stuttgart.Google Scholar
  42. Oberdorfer E. (ed.) (1992)Süddeutsche Pflanzengesellschaften 4. Ed. 2. G. Fischer Verlag, Stuttgart.Google Scholar
  43. Ohlson M. &Zackrisson O. (1992): Tree establishment and microhabitat relationships in north Swedish peatland.Canad. J. Forest Res. 22: 1869–1877.CrossRefGoogle Scholar
  44. Payandeh B. (1973): Analyses of a forest drainage experiment in northern Ontario I. Growth analysis.Canad. J. Forest Res. 3: 387–398.CrossRefGoogle Scholar
  45. Pilcher J.R., Baillie M.G.L., Brown D.M., McCormac F.G., MacSweeney P.B. &McLawrence A.S. (1995): Dendrochronology of subfossil pine in the north of Ireland.J. Ecol. 83: 665–671.CrossRefGoogle Scholar
  46. Richard J.-L. (1961): Les forêts acidophiles du Jura.Matér. Léve Géobot. Suisse 38: 1–164.Google Scholar
  47. Reille M. (1991): L’origine de la station de pin à crochets de la tourbière de Pinet (Aude) et de quelques stations isolées de cet arbre dans les Vosges et le Jura.Bull. Soc. Bot. France 138,Lettres Bot. 2: 123–148.Google Scholar
  48. Royer J.-M., Vadam J.-C., Gillet F., Aumonier J.-P. &Aumonier M.-F. (1978): Etude phytosociologique des tourbière acides du Haut-Doubs. Réflexions sur leur régénération et leur génèse.Doc. Phytosoc. 7: 295–344.Google Scholar
  49. Sandoz H. (1982): Le complexe des Pins dits “de montagne”. Analyse historique des principaux binômes utilisés:Pinus montana Müller,Pinus mugo Turra,Pinus mughus Scopoli,Pinus pumilio Haenke etPinus uncinata Ramond.Rev. Gén. Bot. 89: 121–129.Google Scholar
  50. Sandoz H. (1987):Recherches taxonomiques, biogéographiques et phytoécologiques sur les principaux conifères subalpins des Alpes: mélèze d’Europe, pin cembro, pin à crochets et pin mugho. PhD. Thesis, Université d’Aix-Marseille III, Marseille.Google Scholar
  51. Schmid J., Bogenrieder A. &Schweingruber F.H. (1995): Verjüngung und Wachstum von Moor-Kiefer (Pinus rotundata Link) und Fichten (Picea abies (L.) H.Karsten) in Mooren des Südöstlichen Schwarzwaldes (Süddeutschland).Mitt. Eidgenöss. Forsch. Anst. Wald Schnee Landschaft 70: 175–223.Google Scholar
  52. Schneebeli M. (1991):Hydrologie und Dynamik der Hochmoorentwicklung. PhD. Thesis, ETH, Zürich.Google Scholar
  53. Schulthess J. (1990):Der Einfluss von Entwässerung auf Bewaldung eines Hochmoores: Eine Studie zur rezenten Bewaldungsentwicklung am Etang de la Gruère (JU). MSc. Thesis, Geogr. Inst. Univ. Zürich-Irchel, Zürich.Google Scholar
  54. Schweingruber F.H. (1996):Tree rings and environment, dendroecology. Swiss Federal Institute for Forest, Snow and Landscape Research, Berne, Stuttgart, Vienna, Haupt.Google Scholar
  55. Seppala K. (1969): Postdrainage growth of Norway spruce and Scots pine on peat.Acta Forest. Fenn. 93: 1–89.Google Scholar
  56. Stanek W. (1977): Ontario clay belt peatlands — are they suitable for forest drainage?Canad. J. Forest Res. 7: 656–665.CrossRefGoogle Scholar
  57. Stravinskene V.P. (1983): Dynamics of early and late wood in the annual rings of trees and its change due to the forest drainage.Soviet J. Ecol. 14: 324–328.Google Scholar
  58. Tutin T.G., Heywood V.H., Burges N.A., Valentine D.H., Walters S.M. &Webb D.A. (eds.) (1964–1980):Flora europaea 1–5. Cambridge University Press, Cambridge.Google Scholar
  59. Westhoff V. &van der Maarel E. (1978): The Braun-Blanquet approach. In:Whittaker R.H. (ed.),Classification of plant communities, Junk, The Hague, pp. 287–399.Google Scholar
  60. Wildi O. (1989): A new numerical solution to traditional phytosociological tabular classification.Vegetatio 81: 95–106.CrossRefGoogle Scholar
  61. Wildi O. &Orlóci L. (1996):Numerical exploration of community patterns. A guide to the use of MULVA-5. SPB Academic Publishing, The Hague.Google Scholar
  62. Zobel M. (1988): Autogenic succession in boreal mires — a review.Folia Geobot. Phytotax. 23: 417–445.Google Scholar

Copyright information

© Institute of Botany, Academy of Sciences of the Czech Republic 2000

Authors and Affiliations

  • François Freléchoux
    • 1
  • Alexandre Buttler
    • 2
    • 3
  • François Gillet
    • 1
  1. 1.Laboratoire d’Ecologie végétale et de PhytosociologieInstitut de Botanique de l’UniversitéNeuchâtelSwitzerland
  2. 2.Laboratoire de Chrono-écologie, UMR 6565 CNRS, UFR des Sciences et Techniques, 16 Route de GrayUniversité de Franche-ComtéBesançonFrance
  3. 3.Snow and Landscape Research, Antenne romande, c/o EPFLSwiss Federal Institute for ForestLausanneSwitzerland

Personalised recommendations