Morphogenesis, anatomy and histology of the ligamentum flavum

  • D. Viejo-Fuertes
  • D. Liguoro
  • J. M. Vital
  • J. J. Rombouts
Original Articles


Spinal ligaments play a very important role in the mechanics of the spine. Curiously the ligamentum flavum (LF) has been the object of few specific studies. First a study on LF of foetuses has been carried out with anatomical, histological (classic staining techniques, immunohistochemistry and ultrastructural study) and radiological techniques. The LF is very different from the other spinal ligaments. It derives very early from a mesenchymeal tissue and not from the primitive muscular structures. Its development, its relations are very closed with lamina, capsules and tendons of spinal muscles. It is quickly an innervated and vascularized ligament with a predominance of elastic fibres. It is from a structural and functional point of view, by its two layers, the equivalent of a capsule and an articular ligament.

Second, an ultrastructural and immunohistochemical study has been realized on adult LF to specify the kind of its innervation. It is innervated by fibres of great diameter, with myelin sheath. The positive immunomarking with neuropeptid Y is in favour of the proprioceptive type of this innervation.

The LF has a specific and active role within the vertebral building, at the level of the spinal joints. Its characteristics described above confirm its neurological role especially for proprioceptive control. On the whole, this ligament is both mobilizing, stabilizing and adviser. The implications in spinal physiopathology are numerous.

Key words

Ligamentum flavum Spinal ligaments Anatomy Histology Innervation Morphogenesis 

Morphogenèse, anatomie et histologie du liagmenum flavum


Les ligaments rachidiens jouent un rôle important dans la biomécanique du rachis. Le ligamentum flavum (LF) a été peu étudié alors qu’il est très particulier. Après des travaux rapportés au préalable (32) sur le LF adulte, une étude anatomique, histologique, ultrastructurale et radiologique (RMI) a été réalisée sur le foetus; et une étude ultrastructurale et immunohistochimique sur des LF prélevés en per-opératoire pour préciser le type d’innervation de ce ligament.

Le LF est très tôt formé à partir d’un tissu mésenchymateux et non à partir des structures musculaires primitives comme les autres ligaments. Son développement se fait en synergie avec les structures voisines avec lesquelles il est en relation étroite: capsules articulaires, tendons des muscles érecteurs du rachis. Il devient rapidement un ligament à prédominance de fibres élastiques, organisé en deux couches, innervé et vascularisé. L’étude de sa morphogenèse indique qu’il est d’un point de vue structurel et fonctionnel, par ses 2 couches, à la fois l’équivalent d’une capsule et d’un ligament articulaire. Sa structure histologique particulière lui confère des propriétés biomécaniques spécifiques.

Chez l’adulte, les études réalisées indiquent que ce ligament innervé contient des fibres myélinisées de gros diamètre, immunoréactives pour le Neuropeptide Y, et non pour l’isolectine et la galanine, et donc en faveur de fibres de signification proprioceptive. Mais il est possible que certaines lésions induisent de nouveaux phénotypes vis à vis des molécules synthétisées (nociception secondaire éventuelle).

Le LF est donc un ligament actif au sein de l’édifice vertébral, prenant part au complexe articulaire. Il est mobilisateur, stabilisateur et informateur au niveau intersegmentaire. Les implications en physiopathologie rachidienne sont nombreuses.

Mots clés

Ligamentum flavum Ligaments rachidiens Anatomie Histologie Morphogenèse Innervation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahmed M, Bjurholm A, Kreicbergs A, Schultzberg M (1993) Neuropeptide Y, tyrosine hydroxylase and vasoactive intestinal polypeptide-immunoreactive nerve fibers in the vertebral bodies, discs, dura mater and spinal ligaments of the rat lumbar spine. Spine 18: 268–273PubMedGoogle Scholar
  2. 2.
    Ashton IK, Ashton BA, Gibson SJ, Polak JM, Jaffray DC, Eisenstein SM (1992) Morphological basis for back pain: the demonstration of nerve fibers and neuropeptides in the lumbar facet joint capsule but not in ligamentum flavum. J Orthop Res 10: 72–78PubMedCrossRefGoogle Scholar
  3. 3.
    Barrack RL, Whitecloud TS, Burke SW, Cook SD, Harding AF (1984) Proprioception in idiopathic scoliosis. Spine 9: 681–685PubMedCrossRefGoogle Scholar
  4. 4.
    Behrin JF, Brigg CA (1988) Ligaments of the lumbar spine. A review. Surg Anat 10: 211–219CrossRefGoogle Scholar
  5. 5.
    Bogduk N, Munro RR (1974) Dorsal ramus ventral ramus reflexes in the cat and man (Abstr). J Anat 118: 394PubMedGoogle Scholar
  6. 6.
    Bogduk N, Wilson AS, Tynan W (1982) The human lumbar dorsal rami. J Anat 134: 383–397PubMedGoogle Scholar
  7. 7.
    Bogduk N (1983) The innervation of the lumbar spine. Spine 8: 286–293PubMedCrossRefGoogle Scholar
  8. 8.
    Bourges M, Vanneuville G (1994) Etude sur l’aspect évolutif des ligaments du rachis chez le foetus humain. Bull Assoc Anat 78: 5–8Google Scholar
  9. 9.
    Edgar MA, Ghadially JA (1976) Innervation of the lumbar spine. Clin Orthop 115: 35–41PubMedGoogle Scholar
  10. 10.
    Goel VK, Fromknecht SJ, Nishiyama K, Weinstein J, Liu YK (1985) The role of lumbar spinal elements in flexion. Spine 10: 516–523PubMedCrossRefGoogle Scholar
  11. 11.
    Gracovetsky S, Farfan HF, Lamy C (1981) The mechanism of the lumbar spine. Spine 6: 249–262PubMedCrossRefGoogle Scholar
  12. 12.
    Groen GJ, Baljet B, Drukker J (1990) Nerves and nerve plexuses of the human vertebral column. Am J Anat 188: 282–296PubMedCrossRefGoogle Scholar
  13. 13.
    Hadley-Miller N, Mims B, Milewicz DM (1994) The potential role of the elastic fiber system in adolescent idiopathic scoliosis. J Bone & Joint Surg (A) 76: 1193–1206Google Scholar
  14. 14.
    Hasue M, Kikuchi S, Sakuyama Y, Ito T (1983) Anatomic study of the interrelation between the lumbosacral nerve roots and their surrounding tissues. Spine 8: 50–58PubMedCrossRefGoogle Scholar
  15. 15.
    Hirsch C, Ingelmark BE, Miller M (1963) The anatomical basis for low back pain: studies on the presence of sensory nerve endings in ligamentaous, capsular and intervertebral disc structures in human lumbar spine. Acta Orthop Scand 33: 1–17PubMedGoogle Scholar
  16. 16.
    Hökfelt T, Zhang X, Xu ZQ, Ji RR, Shi T, Corness J, Kerekes N, Landry M, Holmberg K, Broberger C (1997) Phenotype regulation in dorsal root ganglion neurons after nerve injury: focus on peptides and their receptors. In: Molecular neurobiology of Pain, Progress in Pain research and management, Vol.9, Ch.8, pp 115–143, edited by D Borsook, IASP Press, SeattleGoogle Scholar
  17. 17.
    Hukins DWL, Kirby MC, Sikoryn TA, Aspden RM, Cox AJ (1990) Comparison of structure, mechanical properties and functions of lumbar spinal ligaments. Spine 15: 787–792PubMedCrossRefGoogle Scholar
  18. 18.
    Jackson HC, Winkelmann RK, Bickel WH (1966) Nerve endings in the human lumbar spinal column and related structures. J Bone & Joint Surg (A) 48: 1272–1281Google Scholar
  19. 19.
    Jiang H, Russel G, Raso VJ, Moreau MJ, Hill DL, Bagnall KM (1995) The nature and distribution of the innervation of human supraspinal and interspinal ligaments. Spine 20: 869–876PubMedCrossRefGoogle Scholar
  20. 20.
    Korkala O, Gronblad M, Liesi P, Karaharju E (1985) Immunohistochemical demonstration of nociceptors in ligamentous structures of the lumbar spine. Spine 10: 156–157PubMedCrossRefGoogle Scholar
  21. 21.
    Kubota T, Kawano H, Yamashima T (1987) Ultrastructural study of calcification process in the ligamentum flavum of the cervical spine. Spine 12: 317–323PubMedCrossRefGoogle Scholar
  22. 22.
    Maigne JY, Ayral X, Guerin-Surville H (1992) Frequency and size of ossification in the caudal attachments of the ligamentum flavum of the thoracic spine. Role of rotatoru strains in their development. An anatomic study of 121 spines. Surg & Radiol Anat 14: 119–124CrossRefGoogle Scholar
  23. 23.
    Okada K, Oka S, Tohge K (1991) Thoracic myelopathy caused by ossification of the ligamentum flavum: clinicopathologic study and surgical treatment. Spine 16: 280–287PubMedCrossRefGoogle Scholar
  24. 24.
    Olszewski AD, Yaszemski MJ, White AA (1996) The anatomy of the human lumbar ligamentum flavum. New observations and their surgical importance. Spine 21: 2307–2312PubMedCrossRefGoogle Scholar
  25. 25.
    Panjabi MM, Goel VK, Takata K (1982) Physiological strains in lumbar spinal ligaments. An in vitro biomechanical study. Spine 7: 192–203PubMedCrossRefGoogle Scholar
  26. 26.
    Putz R (1992) The detailed functional anatomy of the ligaments of the vertebral column. Ann Anat 174: 40–47PubMedGoogle Scholar
  27. 27.
    Ramani PS, Perry RH, Tomlinson BE (1975) Role of ligamentum flavum in the symptomatology of prolapsed lumbar intervertebral discs. J Neurol Neurosurg Psych 38: 550–557CrossRefGoogle Scholar
  28. 28.
    Rhalmi S, Yahia LH, Newman N, Isler M (1993) Immunohistochemical study of nerves in lumbar spine ligaemnts. Spine 18: 264–267PubMedCrossRefGoogle Scholar
  29. 29.
    Rivard CH, Rhalmi S, Newman N, Yahi LH (1993) Etude morphologique de l’innervation des ligaments rachidiens de patients scoliotiques. Ann Chir 47: 869–873PubMedGoogle Scholar
  30. 30.
    Verbiest H (1954) A radicular syndrome from developmental narrowing of the lumbar vertebral canal. J Bone & Joint Surg (B) 36: 230–237Google Scholar
  31. 31.
    Vernet O, Frankhauser H, Schnyder P, Deruaz JP (1991) Cust of the ligamentum flavum: report of six cases. Neurosurg 29: 277–283CrossRefGoogle Scholar
  32. 32.
    Viejo-Fuertes D, Liguoro D, Rivel J, Guerin J (1998) Anatomical and histological study of the ligamentum flavum. Surg Radiol Anat 20: 171–176PubMedCrossRefGoogle Scholar
  33. 33.
    White AA, Panjabi MM (1978) Clinical biomechanics of the spine. Ed. Lippincott, 533 pagesGoogle Scholar
  34. 34.
    Yahia LH, Newman N, Rivard CH (1988) Neurohistology of lumbar spine ligaments. Acta Orthop Scand 59: 508–512PubMedCrossRefGoogle Scholar
  35. 35.
    Yahia LH, Garzon S, Strykowski H, Rivard CH (1990) Ultrastructure of the human interspinous ligament and ligamentum flavum. A preliminary study. Spine 15: 262–268PubMedCrossRefGoogle Scholar
  36. 36.
    Yamashita T, Minaki Y, Ozaktay AC, Cavanaugh JM, King AI (1996) A morphological study of the fibrous capsule of the human lumbar facet joint. Spine 21: 538–543PubMedCrossRefGoogle Scholar
  37. 37.
    Yekutiel M, Robin GC (1981) Proprioceptive function in children with adolescent idiopathic scoliosis. Spine 6: 560–566PubMedCrossRefGoogle Scholar
  38. 38.
    Yong-Hing K, Reilly J, Kirkaldy-Willis WH (1976) The ligamentum flavum. Spine 1: 226–234CrossRefGoogle Scholar
  39. 39.
    Yoshiba M, Shima K, Taniguchi Y, Tamaki T, Tanaka T (1992) Hypertrophhied ligamentum flavum in lumbar spinal canal stenosis. Pathogenesis and morphologic and immunohistochemical observation. Spine 17: 1353–1360Google Scholar

Copyright information

© Springer-Verlag 2000

Authors and Affiliations

  • D. Viejo-Fuertes
    • 1
  • D. Liguoro
    • 2
  • J. M. Vital
    • 2
  • J. J. Rombouts
    • 1
  1. 1.Département de Chirurgie Orthopédique, Cliniques Universitaires Saint-LucUniversité Catholique de LouvainBruxellesBelgique
  2. 2.Laboratoire d’AnatomieUniversité Victor Segalen-Bordeaux IIBordeauxFrance

Personalised recommendations