Advertisement

Folia Geobotanica

, Volume 35, Issue 2, pp 143–160 | Cite as

Long-term demographic variation in range-margin populations ofGypsophila fastigiata

  • Karin Bengtsson
Article

Abstract

Disjunct populations of the perennial herbGypsophila fastigiata L. (Caryophyllaceae) on the Baltic island of Öland were monitored during a thirteen-year study. The main objectives were to analyze the dynamic features ofG. fastigiata within and among sub-populations in shorter and longer time perspectives, and to relate this to habitat characteristics and patterns in local weather variation. The total number of individuals decreased and the proportion of reproductive individuals increased throughout the study period. Recruitment and mortality on a fine spatial scale (0.25 m2) were negatively correlated to species richness and vegetation cover. Rapid changes in population sizes were observed during and after summers with low precipitation. The highest mortality rates were found in pre-reproductive stages whereas relatively many of the adult plants survived the droughts. The long-term trend of population decline inG. fastigiata could be a result of changes in vegetation structure due to changing grazing regimes. It might also be an effect of more frequent dry summers during the second half of the observation period or of an interaction between weather and changes in management. Another interpretation is that dynamic processes are taking place on a geographic scale not covered in the present study.

Keywords

Alvar Calcareous grasslands Dynamics Grazing Population structure Precipitation Vegetation structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albertson N. (1950): Das grosse südliche Alvar der Insel Öland.Svensk Bot. Tidskr. 44: 269–331.Google Scholar
  2. Bazzaz F.A. (1984): Demographic consequences of plant physiological traits: some case studies. In:Dirzo R. &Sarukhán J. (eds.),Perspectives on plant population ecology, Sinauer, Sunderland, pp. 324–346.Google Scholar
  3. Bell G., Lechowicz M.L. &Schoen D.J. (1991): The ecology and genetics of fitness in forest plants. III. Environmental variance in natural populations ofImpatiens pallida.J. Ecol. 79: 697–713.CrossRefGoogle Scholar
  4. Bengtsson K. (1993):Fumana procumbens on Öland: population dynamics of a disjunct species at the northern limits of its range.J. Ecol. 81: 745–758.CrossRefGoogle Scholar
  5. Bengtsson K., Prentice H.C., Rosén E., Moberg R. &Sjörgren E. (1988): The dry alvar grasslands of Öland: ecological amplitudes of plant species in relation to vegetation composition.Acta Phytogeogr. Suec. 76: 21–46.Google Scholar
  6. Brussard P.F. (1984): Geographic patterns and environmental gradients: the central-marginal model inDrosophila revisited.Annual Rev. Ecol. Syst. 15: 25–64.CrossRefGoogle Scholar
  7. Bullard E.R., Shearer H.D.H., Day J.D. &Crawford R.M.M. (1987): Survival and flowering ofPrimula scotica Hook.J. Ecol. 75: 589–602.CrossRefGoogle Scholar
  8. Burgman M.A., Ferson S. &Akçakaya H.R. (1993):Risk assessment in conservation biology. Population and community biology series 12, Chapman & Hall, London.Google Scholar
  9. Carson H.L. &Templeton A.R. (1984): Genetic revolutions in relation to speciation phenomena: the founding of new populations.Annual Rev. Ecol. Syst. 15: 97–131.CrossRefGoogle Scholar
  10. Carter R.N. &Prince S.D. (1987): Distribution limits from a demographic point of view. In:Davy A.J., Hutchings M.J. &Watkinson A.R. (eds.),Plant population ecology, The 28th Symposium of the British Ecological Society, Sussex 1987, Blackwell Scientific Publications, Oxford, pp. 165–184.Google Scholar
  11. Chandler C.R. (1995): Practical considerations in the use of simultaneous inference in multiple tests.Anim. Behav. 49: 524–527.CrossRefGoogle Scholar
  12. Dunnett N.P., Willis A.J., Hunt R. &Grime J.P. (1998): A 38-year study of relations between weather and vegetation dynamics in road verges near Bibury, Gloucestershire.J. Ecol. 86:610–623.CrossRefGoogle Scholar
  13. Dytham C. (1999):Choosing and using statistics: A biologists guide. Blackwell Science Ltd., Oxford.Google Scholar
  14. Eriksson B. (1982):Data concerning the air temperature climate in Sweden. Swedish Meteorological and Hydrological Institute, Report No. 39, Norrköping.Google Scholar
  15. Falińska K. (1997): Life history variation inCirsium palustre and its consequences for the population demography in vegetation succession.Acta Soc. Bot. Poloniae 66: 207–220.Google Scholar
  16. Fowler J. &Cohen L. (1990):Practical statistics for field biology. John Wiley & Sons Ltd., Chichester.Google Scholar
  17. Gaston K.J. (1991): How large is a species range?Oikos 61: 434–437.CrossRefGoogle Scholar
  18. Holsinger K.E. &Gottlieb L.D. (1991): Conservation of rare and endangered plants: principles and prospects. In:Falk D.A. &Holsinger K.E. (eds.),Genetics and conservation of rare plants, Oxford University Press, New York, Oxford, pp. 195–208.Google Scholar
  19. Hultén E. (1971):Atlas över Växternas Utbredning i Norden (Atlas of distribution of plants in the Nordic countries). Ed. 2. Generalstabens Litografiska Anstalts Förlag, Stockholm.Google Scholar
  20. Huntley B. &Birks H.J.B. (1983):An atlas of past and present pollen maps for Europe: 0–13000 years ago. Cambridge University Press, Cambridge.Google Scholar
  21. Hutchings M.J. (1987): The population biology of the early spider orchid,Ophrys sphegodes Mill. I. A demographic study from 1975–1984.J. Ecol. 75: 711–727.CrossRefGoogle Scholar
  22. Inghe O. &Tamm C.O. (1985): Survival and flowering of perennial herbs. IV. The behaviour ofHepatica nobilis andSanicula europaea on permanent plots during 1943–1981.Oikos 45: 400–420.CrossRefGoogle Scholar
  23. Jalas J. &Suominen J. (1986):Atlas florae europaeae 7, Caryophyllaceae (Silenoideae). The Committee for the Mapping of the Flora of Europe & Societas Biologica Fennica, Helsinki.Google Scholar
  24. Kelly D. (1989): Demography of short-lived plants in chalk grassland. I. Life cycle variation in annuals and strict biennials.J. Ecol. 77: 747–769.CrossRefGoogle Scholar
  25. Lee J.M. &Hamrick J.L. (1983): Demography of two natural populations of Musk thistle (Carduus nutans).J. Ecol. 71: 923–936.CrossRefGoogle Scholar
  26. Lönn M., Prentice H.C. &Bengtsson K. (1996): Genetic structure, allozyme-habitat associations and reproductive fitness inGypsophila fastigiata (Caryophyllaceae).Oecologia 106: 308–316.CrossRefGoogle Scholar
  27. Mack R.N. &Pyke D.A. (1983): The demography ofBromus tectorum: variation in time and space.J. Ecol. 71: 69–93.CrossRefGoogle Scholar
  28. Marshall J. (1968): Factors limiting the survival ofCorynephorus canescens (L.)Beauv. in Great Britain at the northern edge of its distribution.Oikos 19: 206–216.CrossRefGoogle Scholar
  29. Matlack G.R. (1987): Comparative demographies of four adjacent populations ofSilene dioica (Caryophyllaceae).J. Ecol. 75: 113–134.CrossRefGoogle Scholar
  30. Novotný V. (1991): Effect of habitat persistence on the relationship between geographic distribution and local abundance.Oikos 61: 431–433.CrossRefGoogle Scholar
  31. Parsons P.A. (1983):The evolutionary biology of colonizing species. Cambridge University Press, Cambridge.Google Scholar
  32. Pigott C.D. &Walters S.M. (1954): On the interpretation of the discontinuous distributions shown by certain British species of open habitats.J. Ecol. 42: 95–116.CrossRefGoogle Scholar
  33. Rabinowitz D. (1981): Seven forms of rarity. In:Synge H. (ed.),The biological aspects of rare plant conservation, John Wiley & Sons Ltd., Chichester, pp. 205–217.Google Scholar
  34. Rice W.R. (1989): Analyzing tables of statistical tests.Evolution 43: 223–225.CrossRefGoogle Scholar
  35. Roff D.A. (1992):The evolution of life histories. Theory and analysis. Chapman & Hall, London.Google Scholar
  36. Rosén E. (1982): Vegetation development and sheep grazing in limestone grasslands of South Öland, Sweden.Acta Phytogeogr. Suec. 72: 1–104.Google Scholar
  37. Rosén E. (1985): Succession and fluctuations in species composition in the limestone grasslands of south Öland.Münstersche Geogr. Arbeiten 20: 25–33.Google Scholar
  38. Rosén E. (1988): Development and seedling establishment within aJuniperus communis stand on Öland, Sweden.Acta Bot. Neerl. 37: 193–201.Google Scholar
  39. Rosén E. (1995): Periodic droughts and long-term dynamics of Alvar grassland vegetation on Öland, Sweden.Folia Geobot. Phytotax. 30: 131–140.Google Scholar
  40. Rosén E. &Borgegård S.-O. (1999): The open cultural landscape. In:Rydin H., Snoeijs P. & Diekmann M. (eds.), Swedish plant geography,Acta Phytogeogr. Suec. 84: 113–134.Google Scholar
  41. Rusch G. (1993): The role of regeneration by seed in the dynamics of limestone grassland communities.Acta Univ. Upsal. (Compreh. Summ. Uppsala Diss. Fac. Sci.) 427: 1–22.Google Scholar
  42. Rusch G. &Fernández-Palacios J.M. (1995): The influence of spatial heterogeneity on regeneration by seed in a limestone grassland.J. Veg. Sci. 6: 417–427.CrossRefGoogle Scholar
  43. Silander J.A. Jr. (1983): Demographic variation in the Australian desert cassia under grazing pressure.Oecologia 60: 227–233.CrossRefGoogle Scholar
  44. Silvertown J.W. (1981): Micro-spatial heterogeneity and seedling demography in species-rich grassland.New Phytol. 88: 117–128.CrossRefGoogle Scholar
  45. Silvertown J.W. &Dickie J.B. (1981): Seedling survivorship in natural populations of nine perennial chalk grassland plants.New Phytol. 88: 555–558.CrossRefGoogle Scholar
  46. Sjögren E. 1964: Epilitische und epigäische Moosvegetation in Laubwäldern der Insel Öland (Schweden).Acta Phytogeogr. Suec. 48: 1–184.Google Scholar
  47. Skre O. (1979): The regional distribution of vascular plants in Scandinavia with requirements for high summer temperatures.Norweg J. Bot. 26: 295–318.Google Scholar
  48. Steinhauser F. (1970):Climatic atlas of Europe. WMO & UNESCO, Geneva.Google Scholar
  49. Sterner R. (1938): Flora der Insel Öland.Acta Phytogeogr. Suec. 9: 1–169.Google Scholar
  50. Svensson B.M., Carlsson B.Å, Karlsson P.S. &Nordell K.O. (1993): Comparative long-term demography of three species ofPinguicula.J. Ecol. 81: 635–645.CrossRefGoogle Scholar
  51. Symonides E. (1979): The structure and population dynamics of psammophyte communities on inland dunes. I. Populations of initial stages.Ekol. Polska 27: 3–37.Google Scholar
  52. van der Maarel E. (1988): Floristic diversity and guild structure in the grasslands of Ölands Stora Alvar.Acta Phytogeogr. Suec. 76: 53–66Google Scholar
  53. Vorontzova L.I. &Zaugolnova L.B. (1985): Population biology of steppe plants. In:White J. (ed.),The population structure of vegetation, Dr W. Junk Publishers, Dordrecht, pp. 143–178.Google Scholar
  54. Watkinson A.R. (1990): The population dynamics ofVulpia fasciculata: a nine-year study.J. Ecol. 78: 196–209.CrossRefGoogle Scholar
  55. Weller S.G. (1985): The life history ofLithospermum caroliense, a long-lived herbaceous sand dune species.Ecol. Monogr. 55.Google Scholar
  56. Wells T.C. (1981): Population ecology of terrestrial orchids. In:Synge H. (ed.),The biological aspects of rare plant conservation, John Wiley & Sons Ltd., Chichester, pp. 281–295.Google Scholar
  57. Williams O.B. (1970): Population dynamics of two perennial grasses in Australian semi-arid grassland.J. Ecol. 58: 869–875.CrossRefGoogle Scholar
  58. Woodward F.I. (1997): Life at edge: a 14-year study of aVerbena officinalis population’s interactions with climate.J. Ecol. 85: 899–906.CrossRefGoogle Scholar

Copyright information

© Institute of Botany, Academy of Sciences of the Czech Republic 2000

Authors and Affiliations

  • Karin Bengtsson
    • 1
  1. 1.Department of Plant Ecology, Evolutionary Biology CentreUppsala UniversityUppsalaSweden

Personalised recommendations