Il Nuovo Cimento A (1965-1970)

, Volume 80, Issue 2, pp 141–167 | Cite as

A unified quantum-chromodynamics picture of broken chiral symmetry

  • N. H. Fuchs
  • M. D. Scadron


The concepts of running quark masses and light plane quark wave functions are utilized in the framework of QCD to demonstrate that the neutral PCAC scheme of perturbative chiral-symmetry breaking not only follows in a consistent theoretical manner but also accommodates spontaneous breakdown of chiral symmetry. The QCD-based results strongly suggest that the perturbative current quark masses are determined by the scalemcurr ≈ 60 MeV and the ratio (ms/m)curr ≈ 5, while concurrently the nonperturbative dynamically generated quark mass ismdyn≈315 MeV.


12.90. - Miscellaneous theoretical ideas and models 

Единая квантово-хромодинамическая картина нарушенной киральной симметрии


В рамках квантовой хромодинамики испльзуются концепции масс кварков и волновые функции кварков для иллюстрации, что схема нейтральных PCAC для пертурбационного нарушения киральной симметрии не только получается самосогласованным теоретическим образом, но также соответствует спонтанному нарушению киральной симметрии. Результаты, полученные в рамках квантовой хромодинамики, предполагают, что пертурбационные токовые массы кварков определяются масштабомmcur = 60 МэВ и отношением (ms/m)curr = 5, тогда как непертурбационная динамически образованная масса кварка равнаmdyn=315 МэВ.


Si utilizzano i concetti di massa del quark corrente e le funzioni d’onda del quark del piano della luce nell’àmbito della QCD per dimostrare che lo schema della PCAC neutra della rottura perturbativa della simmetria chirale non solo consegue in modo teorico consistente dà spazio alla rottura spontanea della simmetria chirale. I risultati basati sulla QCD suggeriscono marcatamente che le masse perturbative dei quark di corrente sono determinati dallamcurr ≈ 60 MeV e il rapporto (ms/m)curr ≈ 5, mentre in concomitanza la massa dei quark non perturbativa generata dimanicamente èmdyn≈315 MeV.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Y. Nambu:Phys. Rev. Lett.,4, 380 (1960);Y. Nambu andG. Jona-Lasinio:Phys. Rev.,122, 345 (1961).CrossRefADSGoogle Scholar
  2. (2).
    J. Goldstone:Nuovo Cimento,19, 154 (1961);J. Goldstone, A. Salam andS. Weinberg:Phys. Rev.,127, 965 (1962).MATHMathSciNetCrossRefGoogle Scholar
  3. (3).
    R. Delbourgo andM. D. Scadron:J. Phys. G 5, 1621 (1979).CrossRefADSGoogle Scholar
  4. (4).
    For a recent review, seee.g.,M. D. Scadron:Rep. Prog. Phys.,44, 213 (1981).CrossRefADSGoogle Scholar
  5. (5).
    H. Lipkin:Phys. Rep. C,8, 173 (1973).CrossRefADSGoogle Scholar
  6. (6).
    A. De Rújula, H. Georgi andS. Glashow:Phys. Rev. D,12, 147 (1975).CrossRefADSGoogle Scholar
  7. (7).
    N. Isgur:Phys. Rev. D,20, 1191 (1980);Lecture at XVI International School of Subnuclear Physics, Erice, 1978, edited byA. Zichichi (Plenum Press, New York, N. Y., 1980).CrossRefADSGoogle Scholar
  8. (8).
    M. Gell-Mann, R. J. Oakes andB. Renner:Phys. Rev.,175, 2195 (1968).CrossRefADSGoogle Scholar
  9. (9).
    S. Glashow andS. Weinberg:Phys.Rev. Lett.,20, 224 (1968).CrossRefADSGoogle Scholar
  10. (10).
    S. Weinberg:A Festschrift for I. I. Rabi, edited byL. Motz (Academy of Science, New York, N. Y., 1977), p. 185.Google Scholar
  11. (11).
    R. F. Dashen:Phys. Rev.,183, 1245 (1969);H. Pagels:Phys. Rep. C.,16, 219 (1975).CrossRefADSGoogle Scholar
  12. (12).
    H. F. Jones andM. D. Scadron:Phys. Rev. D,10, 9675 (1974);11, 174 (1975).Google Scholar
  13. (13).
    W. Weisberger:Phys. Rev. D,5, 2600 (1972);R. L. Jaffe andC. H. Llewellyn Smith:Phys. Rev. D,7, 2506 (1973);J. F. Gunion:Phys. Rev. D,10, 242 (1974).CrossRefADSGoogle Scholar
  14. (14).
    J. F. Gunion, P. C. McNamee andM. D. Scadron:Phys. Lett. B,63, 81 (1976);Nucl. Phys. B,123, 445 (1977).CrossRefADSGoogle Scholar
  15. (15).
    N. H. Fuchs:Phys. Rev. D,8, 4079 (1973);14, 1709 (1976);16, 1535 (1977).CrossRefADSGoogle Scholar
  16. (16).
    H. Sazdjian andJ. Stern:Nucl. Phys. B,94, 163 (1975).CrossRefADSGoogle Scholar
  17. (17).
    N. H. Fuchs andM. D. Scadron:Phys. Rev. D,20, 2421 (1979).CrossRefADSGoogle Scholar
  18. (18).
    M. D. Scadron:J. Phys. G,7, 1325 (1981).CrossRefADSGoogle Scholar
  19. (19).
    H. Georgi andH. D. Politzer:Phys. Rev. D,14, 1829 (1976).CrossRefADSGoogle Scholar
  20. (20).
    H. D. Politzer:Nucl. Phys. B,117, 397 (1976).CrossRefADSGoogle Scholar
  21. (21).
    S. J. Eidelman, L. M. Kurdadze andA. I. Vainshtein:Phys. Lett. B,82, 278 (1979);R. K. Ellis: CERN preprint TH 3090 (May 1981);S. J. Brodsky: SLAC Summer School lectures (1981);A. J. Buras: review talk atLepton-Photon Conference, Bonn, Germany, 1981 (Fermilab report Conf-81/69-THY).CrossRefADSGoogle Scholar
  22. (22).
    M. Creutz:Phys. Rev. Lett.,45, 313 (1980).CrossRefADSGoogle Scholar
  23. (23).
    M. V. Terentev:Sov. J. Nucl. Phys.,24, 106, (1976);V. B. Berestetsky andM. V. Terentev:Sov. J. Nucl. Phys.,24, 547 (1976);25, 653 (1977).Google Scholar
  24. (24).
    C. Michael andF. P. Payne:Nucl. Phys. B,148, 102 (1979);Phys. Lett. B,91, 441 (1980);Z. Phys. C,12, 145 (1982).Google Scholar
  25. (25).
    S. J. Brodsky andG. P. Lepage:Phys. Rev. D,22, 2157 (1980).CrossRefADSGoogle Scholar
  26. (26).
    H. Pagels:Phys. Rev. D,19, 3080 (1979).CrossRefADSGoogle Scholar
  27. (27).
    H. Pagels andS. Stokar:Phys. Rev. D,20, 2947 (1979);P. Langacker andH. Pagels:Phys. Rev. D,9, 3413 (1974). The method used is found in the appendix ofR. Jackiw andK. Johnson:Phys. Rev. D,8, 2386 (1973).CrossRefADSGoogle Scholar
  28. (28).
    R. Tarrach:Z. Phys. C,2, 221 (1979).CrossRefADSGoogle Scholar
  29. (29).
    J. M. Cornwall: invited paper atOrbis Scientiae 1981; Phys. Rev. D,22, 1452 (1980).Google Scholar
  30. (30).
    A. De Rújula andF. Martin:Phys. Rev. D,22, 1787 (1980);F. Martin:Phys. Rev. D,19, 1382 (1979).CrossRefADSGoogle Scholar
  31. (31).
    N. Isgur andG. Karl:Phys. Rev. D,18, 4187 (1978).CrossRefADSGoogle Scholar
  32. (32).
    H. Fritzsch, M. Gell-Mann andH. Leutwyler: preprint Caltech (1974), unpublished.Google Scholar
  33. (33).
    Z. F. Ezawa:Nuovo Cimento A,23, 271 (1974);G. Farrar andD. R. Jackson:Phys. Rev. Lett.,35, 1416 (1975).CrossRefADSGoogle Scholar
  34. (34).
    Arguments in favor of the use of an «on-shell» prescription have been recently advanced byG. T. Bodwin, C. Y. Lo, J. D. Stack andJ. D. Sullivan:Phys. Lett. B,92, 337 (1980);J. Ambjørn andN. Sakai:Z. Phys. C,8, 221 (1981);C. H. Llewellyn Smith:Perturbative QCD, inHigh Energy Physics, 1980, XX International Conference, Madison, Wis.CrossRefADSGoogle Scholar
  35. (35).
    H. Pagels andS. Stokar:Phys. Rev. D,22, 2876 (1980).CrossRefADSGoogle Scholar
  36. (36).
    C. Becchi, S. Narison, E. de Rafael andF. J. Yndurain:Z. Phys. C,8, 335 (1981).CrossRefADSGoogle Scholar
  37. (37).
    For a critical examination of the preceding reference, seeW. Hubschmid andS. Mallik: preprint University Bern (December 1980).Google Scholar
  38. (38).
    H. Fritzsch andH. Leutwyler:Phys. Rev. D,10, 1624 (1974).CrossRefADSGoogle Scholar
  39. (39).
    H. Sazdjian:Nucl. Phys. B,129, 319 (1977);N. H. Fuchs andH. Sazdjian:Phys. Rev. D,18, 889 (1978).CrossRefADSGoogle Scholar
  40. (40).
    M. A. Shifman, A. I. Vainshtein andV. I. Zacharov:Nucl. Phys. B,147, 385 (1979);J. Chakrabarti andV. S. Mathur:Phys. Lett. B,107, 111 (1981);N. S. Craigie andJ. Stern:Phys. Rev. D,26, 2430 (1982).CrossRefADSGoogle Scholar
  41. (41).
    See, for example,V. Baluni andD. J. Broadhurst:Nucl. Phys. B,84, 178 (1975).CrossRefADSGoogle Scholar
  42. (42).
    H. Hamber andG. Parisi:Phys. Rev. Lett. 47, 1792 (1981);E. Marinari, G. Parisi andC. Rebbi:Phys. Rev. Lett.,47, 1795 (1981);D. Weingarten:Phys. Lett. B,109, 57 (1982).CrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica 1984

Authors and Affiliations

  • N. H. Fuchs
    • 1
  • M. D. Scadron
    • 2
  1. 1.Department of PhysicsPurdue UniversityWest Lafayette
  2. 2.Department of PhysicsUniversity of ArizonaTucson

Personalised recommendations