International Journal of Pancreatology

, Volume 1, Issue 5–6, pp 341–351 | Cite as

Effect of dietary fiber on proteolytic pancreatic enzymes in vitro

  • Werner E. Hansen
Research Papers


Chymotrypsin, trypsin, carboxypeptidase A and B, elastase and enterokinase activities were measured in buffer solutions and in human duodenal juice after incubation with wheat bran, cellulose, guar gum, pectin, psyllium and lignin. The different types of dietary fiber led to inhibition of enzymatic activity in most experiments, e.g., lignin could totally ablish the activity of isolated trypsin and chymotrypsin. Only in enterokinase was there no influence. Inhibition depended on incubation time; the effect was proportional to fiber concentration and inversely related to enzyme level. Treatment of fiber with hydrochloric acid (pH 1.5) and heat (95‡C) destroyed inhibitory activity in some experiments. The effect of lignin on one enzyme (trypsin) was reduced by the addition of another enzyme (chymotrypsin). It is concluded that dietary fiber could affect digestion by inhibiting proteolytic pancreatic enzymes.

Key words

Carboxypeptidase chymotrypsin elastase enterokinase enzyme inhibition trypsin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Isaksson, G. and Ihse, I. Effects of dietary fiber on pancreatic enzyme activities of ileostomy evacuates and on excretion of fat and nitrogen in the rat, Scand. J. Gastroenterol., 1983; 18: 417–423.PubMedCrossRefGoogle Scholar
  2. 2.
    Shah, N., Atallah, M.T., Mahoney, R.R. and Pellett, P.L. Effect of dietary fiber components on fecal nitrogen excretion and protein utilization in growing rats, J. Nutr., 1982; 112: 658–666.PubMedGoogle Scholar
  3. 3.
    Schneider, M.U., Domschke, S., Heptner, G. and Domschke, W. Einflu\ von Pflanzenfasern auf die lipolytische und proteolytische exokrine Pankreasfunktion, Dtsch. Med. Wschr., 1984; 109: 250–253.PubMedCrossRefGoogle Scholar
  4. 4.
    Smail Poksay, K. and Schneeman, B.O. Pancreatic and intestinal response to dietary guar gum in rats, J. Nutr., 1983; 113: 1544–1549.Google Scholar
  5. 5.
    Isaksson, G., Lilja, P., Lundquist, I. and Ihse, I. Influence of dietary fiber on exocrine pancreatic function, Digestion, 1983; 27: 57–62.PubMedCrossRefGoogle Scholar
  6. 6.
    Stock-Damgé, C., Bouchet, P., Dentinger, A., Aprahamian, M. and Grenier, J.F. Effect of dietary fiber supplementation on the secretory function of the exocrine pancreas in the dog, Am. J. Clin. Nutr., 1983; 38: 843–848.PubMedGoogle Scholar
  7. 7.
    Sommer, H. and Kasper, H. The effect of dietary fiber on the pancreatic excretory function, Hepato-Gastroenterology, 1980; 27: 477–483.PubMedGoogle Scholar
  8. 8.
    Elsenhans, B., Sufke, U., Blume, R. and Caspary, W.F. The influence of carbohydrate gelling agents on rat intestinal transport of monosaccharide and neutral amino acids in vitro, Clin. Sci., 1980; 59: 373–380.PubMedGoogle Scholar
  9. 9.
    Dunaif, G. and Schneeman, B.O. The effect of dietary fiber on human pancreatic enzyme activity in vitro, Am. J. Clin. Nutr., 1981; 34: 1034–1035.PubMedGoogle Scholar
  10. 10.
    Isaksson, G., Lundquist, I. and Ihse, I. In vitro inhibition of pancreatic enzyme activities by dietary fiber, Digestion, 1982; 24: 54–59.PubMedCrossRefGoogle Scholar
  11. 11.
    Dutta, S.K. and Hlasko, J. Dietary fiber in pancreatic disease: effect of high fiber diet on fat malabsorption in pancreatic insufficiency and in vitro study of the interaction of dietary fiber with pancreatic enzymes, Am. J. Clin. Nutr., 1985; 41: 517–525.PubMedGoogle Scholar
  12. 12.
    Erlanger, B.F., Kokowsky, W. and Cohen, W. The preparation and properties of two new chromogenic substrates of trypsin, Arch. Biochem., 1961; 95: 271–278.PubMedCrossRefGoogle Scholar
  13. 13.
    Nagel, W., Willig, F., Peschke, W. and Schmidt, F.H. über die Bestimmung von Trypsin und Chymotrypsin mit AminosÄure-p-nitroaniliden, Hoppe-Seylers Z. Physiol. Chem., 1965; 340: 1–10.PubMedGoogle Scholar
  14. 14.
    Appel, W. Carboxypeptidasen. In: H.U. Bergmeyer (Ed.), Methoden der Enzymatischen Analyse, 2nd ed., Verlag Chemie, Weinheim, 1970: 906–961.Google Scholar
  15. 15.
    Appel, W. Ekstase. In: H.U. Bergmeyer (Ed.), Methoden der Enzymatischen Analyse, 2nd ed., Verlag Chemie, Weinheim, 1970: 993–997.Google Scholar
  16. 16.
    Niessen, K.H., Schmidt, K. and Brügmann, G. SekundÄrer Enterokinase-Mangel der Duodenalschleimhaut bei partieller und totaler Zottenatrophie. Mschr. Kinderheilk., 1973; 121: 49–53.PubMedGoogle Scholar
  17. 17.
    Hansen, W.E. and Schulz, G. The effect of dietary fiber on pancreatic amylase activity in vitro, Hepato-Gastroenterology, 1982; 29: 157–160.PubMedGoogle Scholar
  18. 18.
    Isaksson, G., Lundquist, I. and Ihse, I. Effect of dietary fiber on pancreatic enzyme activity in vitro. The importance of viscosity, pH, ionic strength, adsorption, and time of incubation, Gastroenterology, 1982; 82: 918–924.PubMedGoogle Scholar
  19. 19.
    Brown, W. Interactions of small molecules with hydrated polymer networks. In: G.E. Inglett and S.I. Falkehag (Eds.), Dietary Fibers: Chemistry and Nutrition, Academic Press, New York, 1979: 1–13.Google Scholar
  20. 20.
    Hansen, W.E., Schulz, G. Lösliche und fixierte Inhibitoren der Amylase. In: K. Huth and C. BrÄuning (Eds.), Pflanzenfasern—Neue Wege in der Stoffwechseltherapie, Karger, Basel, 1983: 144–149.Google Scholar
  21. 21.
    Tanford, C. Physical chemistry of macromolecules, Wiley, New York, 1961: 587–668.Google Scholar

Copyright information

© Elsevier Science Publishers B.V. (Biomedical Division) 1986

Authors and Affiliations

  • Werner E. Hansen
    • 1
  1. 1.II. Medizinische Klinik rechts der IsarTechnische UniversitÄt MünchenMünchen 80FRG

Personalised recommendations