Journal of Molecular Neuroscience

, Volume 9, Issue 3, pp 197–210 | Cite as

Immunocytochemical localization of testis ecdysiotropin in the pupa of the gypsy moth,Lymantria dispar (L.) (Lepidoptera: Lymantriidae)

  • Shirlee M. Meola
  • Marcia Loeb
  • Jan P. Kochansky
  • Renee Wagner
  • Patricia Beetham
  • Mark S. Wright
  • Youssef Mouneimne
  • Michael W. Pendleton
Original Articles


Antiserum against testis ecdysiotropin isolated from the gypsy moth,Lymantria dispar, reacted with neurons in the protocerebrum, optic and antennal lobes, subesophageal, thoracic and abdominal ganglia, as well as in nerve tracts extending through the optic lobes, tritocerebrum, and interganglionic connectives of the pupal stage of these insects. Testis ecdysiotropin is a peptide required by immature moths to initiate production of testes ecdysteroid, which is necessary for the development of the male reproductive system and initiation of spermatogenesis.

Antiserum against testis ecdysiotropin also detected an accumulation of testis ecdysiotripic-like material between the inner and outer testis sheaths of pupae. The localization of this peptide in the imaginal disks of the last larval stage, cells and nerve fibers in the optic and antennal lobes of the pupa of both sexes, as well as in the testes during development of the adult reproductive system indicates that testis ecdysiotropin has a much larger impact on adult metamorphosis than development of the reproductive system and initiation of gametogenesis. Although this peptide may have a modulatory role in the central nervous system (CNS), it may also initiate a cascade of activity required for the development of the adult nervous system, in addition to its role in reproduction.

Index Entries

Peptide ecdysone metamorphosis central nervous system development antennal lobe optic lobe testes development 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bell R. A., Owens C. D., Shapiro M, and Tardif J. R. (1981) Mass rearing and virus production, inThe Gypsy Moth: Research Toward Integrated Pest Management (Doane, C. C. and McManus M. L., eds.), USDA, Washington, DC, pp. 599–655.Google Scholar
  2. Blomquist G. J. and Dillwith J. W. (1983) Pheromones: biochemistry and physiology, inEndocrinology of Insects (Downer R. G. H. and Laufer H., eds.), Liss, New York, pp. 527–542.Google Scholar
  3. Bollenbacker W. E. and Bowen M. F. (1983) The prothoracicotropic hormone, inEndocrinology of Insects (Downer R. G. H. and Laufer H., eds), Liss, New York, pp. 89–99.Google Scholar
  4. Bollenbacher W. E., Agui N., Granger N., and Gilbert L. I. (1980) Insect prothoracic glands in vitro: a system for studying the prothoracicotropic hormone, inInvertebrate Systems in Vitro (Kurstak E., Maramorosch K. K., and Dubendorfer A., eds.), Elsevier/North Holland Biomedical Press, Amsterdam, Holland, pp. 253–271.Google Scholar
  5. Copenhaven P. F. and Truman J. W. (1986) Metamorphosis of the cerebral neuroendocrine system in the moth.Manduca sexta. J. Comp. Neur. 249, 186–204.CrossRefGoogle Scholar
  6. Girardie J., Huet R. O., Nespoulos C., Van Dorsselaer A., and Pernollet J. C. (1991) Physical characterization and sequence identification of the ovary maturating parsin, a new neurohormone purified from the nervous corpora cardiaca of the african locust (Locusta migratoria).Eur. J. Biochem. 202, 1121–1126.PubMedCrossRefGoogle Scholar
  7. Giebultowicz J. M., Riemann J. G., Raina A. K., and Ridgeway R. L. (1989) Circadian system controlling release of sperm in insect testes.Science 245, 1098–1100.PubMedCrossRefGoogle Scholar
  8. Gillot C. and Ismail P. M. (1995) In vitro synthesis of ecdysteroid by the male accessory reproductive glands, testis and abdominal integument of the adult migratory grasshopper,Melanoplus sanguinipes.Invertebr. Reprod. Dev. 27, 65–71.Google Scholar
  9. Girardie J. and Girardie A. (1977) Liberation provoquee in vitro dup produit de neuro secretion des cellules protocerebralis medianes chez le criquet migrateur.J. Physiol. (Paris) 73, 707–721.Google Scholar
  10. Gray R. S., Muehleisen D. P., and Bollenbacher W. E. (1994) Multiple peptide expression by the L-NSC in the tobacco hornworm,Manduca sexta, inInsect Neurochemistry and Neurophysiology 1993 (Borkovec A. B. and Loeb M. J., eds.), CRC, Boca Raton, FL pp. 251–254.Google Scholar
  11. Hagadorn H. H., O'Connor J. D., Fuchs M. S., Sage B., Schlaeger D. A., and Bohm M. K. (1975) Ovary as a source of α-ecdysone in an adult mosquito.Proc. Natl. Acad. Sci. USA 72, 3255–3259.CrossRefGoogle Scholar
  12. Hoffmann K. H., Weidner K., and Seidel M. (1992) Sites of ecdysteroid biosynthesis in female adults ofGryllus bimaculatus.J. Comp. Physiol. B 162, 731–739.CrossRefGoogle Scholar
  13. Homberg U., Davis N. T., Hildebrand J. G. (1990) Peptide-immunocytochemistry of neurosecretory cells in the brain and retrocerebral complex of the sphinx moth, Manduca sexta.J. Comp. Neurol. 303, 35–52.CrossRefGoogle Scholar
  14. Loeb M. J. (1986) Ecdysteroids in testis sheaths ofHeliothis virescens larvae: an immunocytochemical study.Arch. Insect Biochem. Physiol. 3, 173–180.CrossRefGoogle Scholar
  15. Loeb M. J. (1991) Growth and development of sperm-ducts of the tobacco bud worm moth,Heliothis virescens, in vivo and in vitro.Invertebr. Reprod. Dev. 19, 97–105.Google Scholar
  16. Loeb M. J. and Hakim R. S. (1991) Development of genital imaginal discs ofHeliothis virescens culture in vitro with 20-hyroxyocdysone and fat body or testis sheaths.Invertebr. Reprod. Devel. 20, 181–191.Google Scholar
  17. Loeb M. J., Woods C. W., Brandt E. P., and Borkovec A. B. (1982) Larval testes of the tobacco budworm: a new source of insect ecdysteroids.Science 26, 896–897.CrossRefGoogle Scholar
  18. Loeb M. J., Brandt E. P., Woods C. W., and Borkovec A. B. (1987) An ecdysiotropic factor from brains ofHeliothis virescens induces testes to produce immunodetectable ecdysteroid in vitro.J. Exp. Zool. 243, 275–282.CrossRefGoogle Scholar
  19. Loeb M. J., Brandt E. P., Woods C. W., and Bell R. A. (1988) Secretion of ecdysteroid by sheaths of testes of the gypsy moth,Lymantria dispar, and its regulation by testis ecdysiotropin.J. Exp. Zool. 248, 94–100.CrossRefGoogle Scholar
  20. Loeb M. J., Kochansky J., Wagner R. M., and Bell R. A. (1994) Transduction of the signal initiated by the neuropeptide, testis ecdysiotropin, in testes of the gypsy moth,Lymantria dispar.J. Insect Physiol. 40, 939–946.CrossRefGoogle Scholar
  21. Loeb, M. J., Wagner R. M., Woods C. W., Gelman D. G., Harrison D., and Bell R. A. (1997) Naturally occurring analogs ofLymantria testis ecdysiotropin, a gonadotropin isolated from brains ofLymantria dispar pupae.Arch. Insect Biochem. Physiol. 36, 37–50.PubMedCrossRefGoogle Scholar
  22. Meola S. M. and Loeb M. J. (1995) Unique intertesticular tissue complex in larvae ofHeliothis virescens (F.) (Lepidoptera: Noctuidae).Int. J. Insect MorphoL Embryol. 24, 443–457.CrossRefGoogle Scholar
  23. Meola S. M., Clottens F. L., Coast G. M., and Holman G. M. (1994) Localization of leucokinin VIII in the cockroach,Leucophaea maderae, using an antiserum directed against an achetakinin-I analog.Neurochem. Res. 19, 805–814.PubMedCrossRefGoogle Scholar
  24. Nassel D. R., Shiga S., Mohrherr J., and Rao K. R. (1993) Pigment-dispersing hormone-like peptide in the nervous system of the fliesPhormia andDrosophila: Immunocytochemistry and parial characterization.J. Comp. Neurol. 331, 183–198.PubMedCrossRefGoogle Scholar
  25. Nordlander R. H. and Edwards J. S. (1968) Morphology of the larval and adult brains of the monarch butterfly,Danaus plexippus, L.J. Morphol. 126, 67–94.PubMedCrossRefGoogle Scholar
  26. O'Brien M. A., Katahira E. J., Flanagan T. R., Arnold L. W., Haughton G., and Bollenbacher W. E. (1988) A monoclonal antibody to the insect prothoracicotropic hormone.J. Neurosci. 8, 3247–3257.PubMedGoogle Scholar
  27. Pierantoni R. (1974) An observation on the giant fibre posterior optic tract in the fly.Biokybernetik (Leipzig) 5, 157–163.Google Scholar
  28. Plotnikova S. A. (1969) Affector neurones with several axons in the ventral cord ofLocusta migtatoria.J. Evol. Biochem. Physiol. 5, 339–341.Google Scholar
  29. Reimann J. G., Thorson B. J., and Ruud R. L. (1974) Daily cycle of release of sperm from the testes of the mediterranean flour moth.J. Insect Physiol. 20, 195–207.CrossRefGoogle Scholar
  30. Shimizu T., Moribayashi A., and Agui N. (1985) In vivo analysis of spermiogenesis and testicular ecdysteroids in the cabbage armyworm,Mamestra brassicae L.Appl. Entomol. Zool.,20, 56–61.Google Scholar
  31. Truman J. W. and Copenhaver P. F. (1989) The larval eclosion hormone neurones inManduca sexta: identification of the brain-proctodeal neurosecretory system.J. Exp. Biol. 47, 457–470.Google Scholar
  32. Truman J. W., Hewes R. S., and Ewer J. (1994) Action and interaction of peptides in regulating ecdysis behavior in insects, inInsect Neurochemistry and Neurophysiology 1993 (Borkovec A. B. and Loeb M. J., eds.), CRC, Boca Raton, FL, pp.39–51.Google Scholar
  33. Wagner R. M., Loeb M. J., Kocheensky J. P., Gelman D. B., Lusby W. R., and Bell R. A. (1997) Identification and characterization of an ecdysiotropic peptide from brain extracts of the gypsy moth,Lymantria dispar.Arch. Insect Biochem. Physiol. 34, 175–189.CrossRefGoogle Scholar
  34. Weevers R. de G. (1985) The insect ganglia, inComprehensive Insect Physiology Biochemistry and Pharmacology (Kerkut G. A. and Gilbert L. L., eds.), Pergamon, Oxford, UK, pp. 213–297.Google Scholar
  35. Westbrook A. L., Regan S. L., and Bollenbacher W. E. (1993) Developmental expression of the prothoracicotropic hormone in the CNS of the tobacco hornwormManduca sexta.J. Comp. Neurol. 327, 1–16.PubMedCrossRefGoogle Scholar
  36. Zitnan D., Kingan T. G., Kramer S. J., and Beckage N. (1995) Accumulation of Neuropeptides in the cerebral neurosecretory system ofManduca sexta larvae parasitized by the braconid waspCotesia congregata.J. Comp. Neurol. 356, 83–100.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc 1998

Authors and Affiliations

  • Shirlee M. Meola
    • 1
  • Marcia Loeb
    • 2
  • Jan P. Kochansky
    • 2
  • Renee Wagner
    • 2
  • Patricia Beetham
    • 3
  • Mark S. Wright
    • 4
  • Youssef Mouneimne
    • 5
  • Michael W. Pendleton
    • 1
  1. 1.Food Animal Protection Research Laboratory, Agricultural Research ServiceU.S. Department of AgricultureCollege Station
  2. 2.Insect Neurobiology and Hormone Laboratory, Agricultural Research ServiceU. S. Department of AgricultureBeltsville
  3. 3.Livestock Insect Laboratory, Agricultural Research ServiceUS Department of AgricultureKerrville
  4. 4.Department of EntomologyTexas A&M UniversityCollege Station
  5. 5.Department of Veterinary Toxicology, Physiology and PharmacologyTexas A&M UniversityCollege Station

Personalised recommendations