Advertisement

Il Nuovo Cimento A (1965-1970)

, Volume 102, Issue 5, pp 1347–1352 | Cite as

Constrained quantization of the electromagnetic Maxwell theory in the second-order derivative formalism

  • J. Barcelos-Neto
  • N. R. F. Braga
Article

Summary

We canonically quantize the electromagnetic Maxwell theory in the second-order derivative formalism. We work in the radiation gauge, extended to an enlarged phase space.

PACS 03.70

Theory of quantized fields 

PACS 11.10.Ef

Lagrangian and Hamiltonian approach 

Ограниченное квантование электромагнитной теории Максвелла в формализме производных второго порядка

Резюме

Мы канонически квантуем электромагнитную теорию Максвелла в формализме производных второго порядка. Мы используем радиационную калибровку, обобщенную на расширенное фазовое пространство.

Riassunto

Si quantizza canonicamente la teoria elettromagnetica di Maxwell nel formalismo della derivata di secondo ordine. Si lavora nel gauge di radiazione esteso ad uno spazio di fase allargato.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    For general recent reviews of the formalism involving higher-order derivatives, one can mention:S. V. Hawking:Who’s afraid of (higher derivative) ghosts? DAMTP preprint (Cambridge University, 1985);C. G. Bollini andJ. J. Giambiagi:Lagrangian procedures for higher order field equations, CBPF preprint (Rio de Janeiro, 1986);V. V. Nesterenko:The singular Lagrangians with higher derivatives, JINR preprint (Dubna, 1987);V. Tapia:Nuovo Cimento B,101, 183 (1988).Google Scholar
  2. [2]
    J. Barcelos-Neto andN. R. F. Braga:Acta Phys. Pol. B,20, 205 (1989).Google Scholar
  3. [3]
    C. A. P. Galvão andN. A. Lemos:J. Math. Phys. (N. Y.),29, 1588 (1988).MATHCrossRefADSGoogle Scholar
  4. [4]
    See, also,L. D. Landau andE. M. Lifshitz:Mechanics (Pergamon, Oxford, 1960).MATHGoogle Scholar
  5. [5]
    P. A. M. Dirac:Can. J. Math.,2, 129 (1950);Lectures of Quantum Mechanics (Belfer Graduate School of Science, Yeshiva University, New York, N. Y., 1964).MATHMathSciNetCrossRefGoogle Scholar
  6. [6]
    For a general review of constrained canonical quantization seeA. Hanson, T. Regge andC. Teitelboim:Constrained Hamiltonian Systems (Accademia Nazionale dei Lincei, Rome, 1976);K. Sundermeyer:Constrained dynamics, Lecture Notes in Physics, Vol.169 (Springer, Berlin, 1982).Google Scholar
  7. [7]
    J. Barcelos-Neto andN. R. F. Braga:Phys. Rev. D,39, 494 (1989).CrossRefADSGoogle Scholar

Copyright information

© Società Italiana di Fisica 1989

Authors and Affiliations

  • J. Barcelos-Neto
    • 1
  • N. R. F. Braga
    • 1
  1. 1.Instituto de FísicaUniversidade Federal do Rio de JaneiroRio de JaneiroBrasil

Personalised recommendations