Il Nuovo Cimento A (1965-1970)

, Volume 53, Issue 2, pp 327–344 | Cite as

Current algebra and nonleptonic decays

  • Ming Chiang Li


A new scheme is suggested. We demonstrate that thes-wave (p.v.) andp-wave (p.c.) amplitudes in the nonleptonic hyperon decay can be well represented by the extrapolation of the amplitudes of associated productions K1+Y→π+N\(\left( {K_1 = K^0 - \bar K^0 } \right)\) and ϰ1+Y→π+N. The model is also applied to other two-body decays. The results are good compared to the experimental data except for Λ 0 p-wave amplitude.


Current Algebra Mass Shell Invariant Amplitude Nonleptonic Decay Baryon Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Алгебра токов и нелептонные распады


Предлагается новая схема. Мы показываем, чтоs-волновые (p.v.) и μ-волновые (p.c.) амплитуды в нелептонных распадах гиперонов могут быть представлены посредством экстраполяции амплитуд связанных рождений K1+Y→π+N\(\left( {K_1 = K^0 - \bar K^0 } \right)\). и ϰ1+Y→π+N. Модель также применяется к другим двухчастичным распадам. Результаты находятся в хорошем согласиис экспериментальными данными за исключениемp-волновой амплитуды для Λ 0 .


Si suggesrisce un nuovo schema. Si dimostra che le ampiezze dell'ondas (p.v.) e di quellap (p.c.) nei decadimenti di iperoni non leptonici si possono rappresentare con l'estrapolazione delle ampiezze delle produzioni associate K1+Y→π+N\(\left( {K_1 = K^0 - \bar K^0 } \right)\) e ϰ1+Y→π+N. Si applica il modello ad altri tipi di decadimento in due corpi. Il confronto dei risultati con i dati sperimentali è soddisfacente tranne che per l'ampiezza dell'ondap del Λ 0 .


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    A. Salam andJ. C. Ward:Phys. Rev. Lett.,5, 380 (1960);A. Salam:Phys. Lett.,8, 217 (1964);M. Gell-Mann:Phys. Rev.,125, 1067 (1962);S. Coleman andS. L. Slashow:Phys. Rev.,134, B 671 (1967);J. C. Pati andS. Oneda:Phys. Rev.,140, B 1351 (1965);D. Loebbaka andJ. C. Pati:Phys. Rev.,147, 1047 (1966).ADSCrossRefGoogle Scholar
  2. (2).
    M. Gell-Mann:Phys. Rev.,125, 1067 (1962);Physics,1, 63 (1964).ADSMathSciNetCrossRefGoogle Scholar
  3. (3).
    H. Sugawara:Phys. Rev. Lett.,15, 870, 997 (1965);M. Suzuki:Phys. Rev. Lett. 15, 986 (1965);Y. Hara, Y. Nambu andJ. Schecheter:Phys. Rev. Lett.,16, 380 (1966);L. S. Brown andC. Y. Sommerfield:Phys. Rev. Lett.,16, 751 (1966);Y. T. Chiu, J. Schechter andY. Ueda:Phys. Rev.,150, 1201, (1966);S. Pakvasa andS. F. Tuan: (to be published).ADSMathSciNetCrossRefGoogle Scholar
  4. (4).
    M. Gell-Mann andM. Levy:Nuovo Cimento,16, 705 (1960);Y. Nambu:Phys. Rev. Lett.,4, 380 (1960).MathSciNetCrossRefGoogle Scholar
  5. (5).
    The author is grateful toS. Adler for showing him this point.Google Scholar
  6. (6).
    See for example,S. A. Bludman:Lectures at the Institute d'Etudes Scientifiques, Cargese, Corsica, June 1966.Google Scholar
  7. (7).
    Y. Tomozawa:Nuovo Cimento,46 A, 707 (1966);K. Raman andE. C. G. Sudarshan:Phys. Rev.,154, 1499 (1967).ADSCrossRefGoogle Scholar
  8. (8).
    R. C. Hwa andJ. Nuyts Phys. Rev.,151, 1215 (1966).ADSMathSciNetCrossRefGoogle Scholar
  9. (9).
    J. J. de Swart:Rev. Mod. Phys.,35, 916 (1963).ADSCrossRefGoogle Scholar
  10. (10).
    In the case of the pion and nucleon scattering the vector current (Δs=0) from the equal-time commutation relation eq. (9) is conserved. Equation (10) may be satisfied (depending on S.T.) and then we cannot rule out caseA and caseB for the crossing symmetry along.Google Scholar
  11. (11).
    Our method in the text may not be clean, but one can prove eq. (13) by direct partial integration.Google Scholar
  12. (12).
    N. Cabibbo:Phys. Rev. Lett.,10, 531 (1963).ADSCrossRefGoogle Scholar
  13. (13).
    S. Weinberg:Phys. Rev. Lett.,17, 161 (1966).CrossRefGoogle Scholar
  14. (15).
    G. S. Guralnik, U. S. Mathur andL. K. Pandit: (Rochester preprint unpublished 1966). The formula conjectured by them is twice as big as ours.Google Scholar
  15. (16).
    Many people believe the incorrect statement that this Hamiltonian gives a zero contribution for the pion on mass shell, but nonzero for the pion off the mass shell.Google Scholar
  16. (17).
    N. N. Khuri (Phys. Rev.,153, 1477 (1965) has shown that the matrix elements of the scalar density do not enter into the determination of the ππ scattering lengths. We suspect it is also true in our case; nevertheless we take it as an additional assumption.ADSMathSciNetCrossRefGoogle Scholar
  17. (18).
    K. Tanaka Phys. Rev.,140, B 463 (1965);151, B. 1203 (1966);Y. Hara:Phys. Rev. Lett.,12, 378 (1964).ADSCrossRefGoogle Scholar
  18. (19).
    The mass of photon is zero so we do not have any problem in taking limitq γ2=0.Google Scholar
  19. (20).
    Ming Chiang Li:Phys. Rev.,141, 1329 (1966);U. Nauenberg, S. Barshay andJ. Schultz:Phys. Rev. Lett.,12, 79 (1964);M. Bagin, H. Blumenfeld, S. Marateck, U. Nauenberg, R. J. Plano, S. Seidlitz andP. Smith:Phys. Rev.,140, B 1358 (1965).ADSGoogle Scholar
  20. (21).
    J. P. Berge: The compilation of data appended to Cabibbo's report at Berkeley, 1966;A. H. Rosenfeld, A. Barbaro-Galtieri, W. J. Podolsky, L. R. Price P. Söding, C. G. Wohl, M. Roos andW. J. Willis:Rev. Mod. Phys.,39, 1 (1967).Google Scholar
  21. (22).
    It is amusing to note that (L pc F′ π)2=(L pv F π)2 (G A/GV)2.Google Scholar
  22. (23).
    B. Graham andS. Pakvasa:Phys. Rev.,140, B 1144 (1965);R. E. Behrends:Phys. Rev.,111, 1691 (1958);S. Iwao: (Bern) preprint;H. S. Mani, Y. Tomozawa andY. P. Yao:Phys. Rev.,158, 1577 (1967).ADSCrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica 1968

Authors and Affiliations

  • Ming Chiang Li
    • 1
  1. 1.Institute for Advanced StudyPrinceton

Personalised recommendations