Advertisement

Journal d’Analyse Mathématique

, Volume 36, Issue 1, pp 233–243 | Cite as

The dielectric Green's function and quasiconformal mapping

  • M. Schiffer
  • G. Schober
Article
  • 39 Downloads

Keywords

Conformal Mapping QUASICONFORMAL Mapping Complex Constant Extremal Function Hermitian Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Kühnau,Verzerrungssätze und Koeffizientenbedingungen vom Grunskyschen Typ für quasikonforme Abbildungen, Math. Nachr.48 (1971), 77–105.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    R. Kühnau,Identitäten bei quasikonformen Normalabbildungen und eine hiermit zusammenhängende Kernfunktion, Math. Nachr.73 (1976), 73–106.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    M. Schiffer,The Fredholm eigenvalues of plane domains. Pacific J. Math.7 (1957), 1187–1225.MATHMathSciNetGoogle Scholar
  4. 4.
    M. Schiffer,Fredholm eigenvalues of multiply connected domains. Pacific J. Math.9 (1959), 211–269.MATHMathSciNetGoogle Scholar
  5. 5.
    M. Schiffer,A variational method for univalent quasiconformal mappings, Duke Math. J.33 (1966), 395–412.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    M. Schiffer and G. Schober,Representation of fundamental solutions for generalized Cauchy-Riemann equations by quasiconformal mappings. Ann. Acad. Sci. Fenn. Ser. A I2 (1976), 501–531.MathSciNetGoogle Scholar
  7. 7.
    M. Schiffer and G. Schober,An application of the calculus of variations for general families of quasiconformal mappings, Proc. Colloq. Complex Analysis. Joensuu 1978, Springer-Verlag Lecture Notes in Math., to appear.Google Scholar
  8. 8.
    G. Schober,Univalent Functions—Selected Topics, Springer-Verlag Lecture Notes in Math. #478 (1975).Google Scholar

Copyright information

© Hebrew University of Jerusalem 1979

Authors and Affiliations

  • M. Schiffer
    • 1
    • 2
  • G. Schober
    • 1
    • 2
  1. 1.Stanford UniversityStanfordUSA
  2. 2.Indiana UniversityBloomingtonUSA

Personalised recommendations