Advertisement

Applied Biochemistry and Biotechnology

, Volume 11, Issue 2, pp 91–100 | Cite as

Characterization and comparison of soluble and immobilized pig muscle aldolases

  • Magdolna Ábrahám
  • Lóránt Horvth
  • Mária Simon
  • Béla Szajńi
  • Lászl Boross
Original Articles

Abstract

Pig muscle aldolase was insolubilized by covalent attachment to a polyacrylamide matrix containing carboxylic functional groups. The catalytic activity of the Akrilex C-aldolase was 2014 units/g solid, i.e., an activity loss of only about 5% relative to the initial activity. The pH optimum for catalytic activity shifted form 7.25 to 7.5 and the apparent temperature optimum from 313 to 318 K. The Michaelis constant of the insolubilized enzyme was significantly higher than that of the soluble aldolase. Heat- and urea-inactivation experiments revealed that the immobilization increased the stability of the enzyme.

Index Entries

Immobilized aldolase pig muscle aldolase covalent attachment polyacrylamide matrix, containing carboxylic functional groups Akrilex C-100 gel, with high aldolase activity aldolase, with high stability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brown, H. D., Patel, A. B., and Chattopadhyay, S. K. (1968),J. Chromatog.35, 103.CrossRefGoogle Scholar
  2. 2.
    Bernfeld, P., and Wang, J. (1963),Science 142, 678.CrossRefGoogle Scholar
  3. 3.
    Marshall, D. J. (1974), inImmobilized Biochemicals and Affinity Chromatography, Dunlap, R. B., ed., Plenum, New York, pp. 354–356.Google Scholar
  4. 4.
    Bernfeld, P., Bieber, R. E., and MacDonnel, P. C. (1968),Arch. Biochem. Biophys. 127, 779.CrossRefGoogle Scholar
  5. 5.
    Chan, W. W.-C., and Mawer, H. M. (1972),Arch. Biochem. Biophys. 149, 136.CrossRefGoogle Scholar
  6. 6.
    Falb, R. D., Linn, J., and Shapira, J. (1973),Experientia 29, 958.CrossRefGoogle Scholar
  7. 7.
    Schell, H. D., Scholnic, L., and Carstenau, M. (1977),Stud. Cercet. Biochim. 20, 77.Google Scholar
  8. 8.
    Pollak, A., Blumenfeld, H., Wax, M., Baughn, R. L., and Whitesides G. M. (1980),J. Am. Chem. Soc. 102, 6324.CrossRefGoogle Scholar
  9. 9.
    Ábrahám, M., Horváth, L., and Szajáni, B. (1985), Comp. Biochem. Physiol, in press.Google Scholar
  10. 10.
    Szajáni, B., Ivony, K., and Boross, L. (1980),Acta Biochim. Biophys. Acad. Sci. Hung. 15, 295.Google Scholar
  11. 11.
    Szajáni, B., Ivony, K., and Boross, L. (1980),J. Appl. Biochem. 2, 72.Google Scholar
  12. 12.
    Kovács, K., Szajáni, B., and Boross, L. (1980),J. Appl. Biochem. 4, 11.Google Scholar
  13. 13.
    Lowry, O. H., Rosebrough, N. J., Farr, L., and Randall, R. J. (1951),J. Biol. Chem. 193, 503.Google Scholar
  14. 14.
    Sibley, J. A., and Lehninger, A. L. (1948),J. Biol. Chem. 177, 859.Google Scholar

Copyright information

© The Humana Press Inc 1985

Authors and Affiliations

  • Magdolna Ábrahám
    • 1
  • Lóránt Horvth
    • 1
  • Mária Simon
    • 1
  • Béla Szajńi
    • 1
  • Lászl Boross
    • 1
  1. 1.Department of BiochemistryAttila József UniversityKözépfasorHungary

Personalised recommendations