Skip to main content
Log in

Enzyme-catalyzed, gas-phase reactions

  • Original Articles
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Dehydrated preparations of alcohol oxidase adsorbed on DEAEcellulose vigorously catalyze a gas-phase oxidation of ethanol vapors with molecular oxygen. The gas-phase reaction is strongly dependent on the water activity of the system. The enzymatic activity is severely inhibited by the product hydrogen peroxide. This inhibition can be alleviated, however, by an addition of catalase or peroxidase to the dry preparation. Such dehydrated, bienzymic catalysts afford a complete and selective conversion of the substrate to acetaldehyde. Dry alcohol oxidase is much more thermostable than in aqueous solution. The results of this work suggest that dehydrated enzymes have potential applications in the analysis of gaseous compounds and in the development of novel gas-solid bioreactors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guilbault, G. G., and Olivera Neto, G. (1985), inEnzymes and Immobilized Cells in Biotechnology, Laskin, A. I., ed., Benjamin/Cummins, Menlo Park, CA, pp. 227–261.

    Google Scholar 

  2. Bergmeyer, H. U., ed. (1983),Methods of Enzymatic Analysis, 3rd Ed., Verlag Chemie, Weingheim, Deerfield FL, Basel.

    Google Scholar 

  3. Takei, H., Nakashima, K., Adachi, O., Shinagawa, E., and Ameyama, M. (1985),Clin. Chem. 31, 1985.

    CAS  Google Scholar 

  4. Guilbault, G. G. (1983), inSolid Phase Biochemistry, Scouter, W. H., ed., John Wiley, NY, pp. 479–506.

    Google Scholar 

  5. Carr, P. W., and Bowers, L. D. (1980),Immobilized Enzymes in Analytical and Clinical Chemistry, Wiley, NY.

    Google Scholar 

  6. Kricka, L. J., and Thorpe, G. H. G. (1986),Trends Biotech. 4, 253.

    Article  CAS  Google Scholar 

  7. Smith, C. H., Landt, M., Steelman, M., and Ladenson, J. H. (1983),Clin. Chem. 29, 1422.

    CAS  Google Scholar 

  8. Klibanov, A. M. (1986),Chemtech. 16, 354.

    CAS  Google Scholar 

  9. Kazandjian, R. Z., Dordick, J. S., and Klibanov, A. M. (1986),Biotech. Bioeng. 28, 417.

    Article  CAS  Google Scholar 

  10. Clary, J. J., Gibson, J. E., and Waritz, R. S., eds. (1983),Formaldehyde: Toxicology, Epidemiology, Mechanisms, Marcel Dekker, NY.

    Google Scholar 

  11. Hanson, D. (1986),Chem. Eng. News 64, Sept. 22, p. 17.

    Google Scholar 

  12. Meyer, B., and Hermanns, K. (1985), inFormaldehyde, Turoski, V., ed., American Chemical Society, Washington, DC, pp. 101–116.

    Google Scholar 

  13. Barzana, E., Klibanov, A. M., and Karel, M. (1986), US Patent Application no. 895,497.

  14. Kazandjian, R. Z., and Klibanov, A. M. (1985),J. Am. Chem. Soc. 107, 5448.

    Article  CAS  Google Scholar 

  15. Weast, R. C., ed. (1972),Handbook of Chemistry and Physics, 53rd Ed., The Chemical Rubber Co., Cleveland, OH, p. E40.

    Google Scholar 

  16. Laitinen, H. A., and Harris, W. E. (1975),Chemical Analysis, 2nd Ed., McGraw Hill, NY, pp. 361–363.

    Google Scholar 

  17. Hildebrandt, A. G., Roots, M., and Heinemeyer, G. (1978),Meth. Enzymol. 52, 342.

    Article  CAS  Google Scholar 

  18. Tani, Y., Miya, T., and Ogata, K. (1972),Agr. Biol. Chem. 36, 76.

    CAS  Google Scholar 

  19. Kato, N., Omori, Y., Tani, Y., and Ogata, K. (1976),Eur. J. Biochem. 64, 341.

    Article  CAS  Google Scholar 

  20. Guilbault, G. G., and Lubrano, G. L. (1984),Anal. Chem. Acta 69, 189.

    Article  Google Scholar 

  21. Hopkins, T. R. (1985),Am. Biotech. Lab. 3, 32.

    CAS  Google Scholar 

  22. Yagi, T., Tsuda, M., Mori, Y., and Inokuchi, H. (1969),J. Am. Chem. Soc. 91, 2801.

    Article  CAS  Google Scholar 

  23. Kimura, K., Suzuki A., Inokichi, H., and Yagi, T. (1979),Biochim. Biophys. Acta 567, 96.

    CAS  Google Scholar 

  24. Hou, C. T. (1984),Appl. Microbiol. Biotechnol. 19, 1.

    Article  CAS  Google Scholar 

  25. De Bont, J. A. M., van Ginkel, C. G., Tramper, J., and Luyben, K. C. A. M. (1983),Enzyme Microb. Technol. 5, 55.

    Article  Google Scholar 

  26. Cedeno, M., and Waissbluth, M. (1978), inEnzyme Engineering, vol. 4, Brown, G. B., Maneckee, G., and Wingard, L. B., eds., Plenum, NY, pp. 405–407.

    Google Scholar 

  27. Ngeh-Ngwainbi, J., Foleym P. H., Kuan, S. S., and Guilbault, G. G. (1986),J. Am. Chem. Soc. 108, 5444.

    Article  CAS  Google Scholar 

  28. Klibanov, A. M. (1983),Adv. Appl. Microbiol. 29, 1.

    CAS  Google Scholar 

  29. Barzana, E., Klibanov, A. M., and Karel, M. (1986), inDrying 86, Mujumdar, A. S., ed., vol. 1, Hemisphere, NY, pp. 428–431.

    Google Scholar 

  30. Silver, M., and Karel, M. (1981),J. Food Biochem. 5, 283.

    Article  CAS  Google Scholar 

  31. Kundu, A. B., Ghosh, B. L., and Ghosh, S. N. (1982),Carbohydr. Res. 105, 288.

    Article  CAS  Google Scholar 

  32. Saunders, B. C., Holmes-Siedle, A. G. and Stark, B. P. (1964),Peroxidase, Butterworth, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barzana, E., Klibanov, A.M. & Karel, M. Enzyme-catalyzed, gas-phase reactions. Appl Biochem Biotechnol 15, 25–34 (1987). https://doi.org/10.1007/BF02798504

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02798504

Index Entries

Navigation