Applied Biochemistry and Biotechnology

, Volume 14, Issue 1, pp 1–20 | Cite as

A photosynthetic photoelectrochemical cell using phenazine methosulfate and phenazine ethosulfate as electron acceptors

  • Douglas G. Sanderson
  • Elizabeth L. Gross
  • Michael Seibert
Original Article


Several recent studies have demonstrated that photosystem I (PSI), one of the two light-active complexes of photosynthesis, can be used as a light transducer in a biological photoelectrochemical cell. This paper examines the results of using phenazine methosulfate (PMS) and phenazine ethosulfate (PES) as an electron acceptor in such a cell. The PMS and PES have relatively high formal potentials compared to flavin mononucleotide (FMN) and other acceptors used in the past, yet the PMS and PES resulted in power outputs and conversion efficiencies second only to the use of FMN as an acceptor. The mechanism of action has been interpreted in terms of electroactive products of parent compounds formed during the normal function of the cell under illuminated conditions. For example, photolysis and cyclic voltammetry data demonstrate that pyocyanin (Py) [formal potential = -0.37 vs saturated calomel electrode (SCE) at pH 8.5], the photoproduct of PMS, is the electroactive species in cells containing PMS (formal potential = -0.19 vs SCE at pH 8.5). Similar phenomena were observed for PES and FMN. The power output of the cell results from about equal contributions from a cyclic photosynthetic component and a component caused by the direct photoreduction of the acceptor and reoxidation by sacrificial donors in the buffer. Future research directions are discussed in terms of designing cells that function purely in the photosynthetic or photochemical modes.

Index entries

Photoelectrochemical cell photosystem I, photosynthesis photochemistry acceptors phenazine methosulfate phenazine ethosulfate flavin mononucleotide pyocyanin electrochemistry solar cell 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bhardwaj, R., Pan, R. L., and Gross, E. L. (1981),Nature 289, 369.CrossRefGoogle Scholar
  2. 2.
    Bhardwaj, R., Pan, R. L., and Gross, E. L. (1981),Proc. Ann. Meet. Am. Sec. Intl. Solar Energy Soc. 4.1, 184.Google Scholar
  3. 3.
    Bhardwaj, R., Pan, R. L., and Gross, E. L. (1981), inProc. Fifth Intl. Photosynth. Congr.,6, Akoyunoglou, G., ed. Balaban International Science Services, Philadelphia, PA, pp. 719–728.Google Scholar
  4. 4.
    Wraight, C. A. (1982), inPhotosynthesis: Energy Conversion by Plants and Bacteria, I, Govindjee, ed., Academic, NY, NY, p. 17.Google Scholar
  5. 5.
    Gross, E. L., Youngman, D. R., and Winemiller, S. L. (1978),Photochem. Photobiol. 28, 249.Google Scholar
  6. 6.
    Pan, R. L., Bhardwaj, R., and Gross, E. L. (1982),Photochem. Photobiol. 35, 655.Google Scholar
  7. 7.
    Bhardwaj, R., Pan, R. L., and Gross, E. L. (1981),Photochem. Photobiol. 34, 215.Google Scholar
  8. 8.
    Bhardwaj, R., Pan, R. L., and Gross, E. L. (1981),Photobiochem. Photobiophys. 3, 19.Google Scholar
  9. 9.
    Sanderson, D. G., Pan, R. L., and Gross, E. L. (1983),App. Biochem. Biotech. 8, 395.CrossRefGoogle Scholar
  10. 10.
    Shiozawa, J. A., Alberte, R. S., and Thornber, J. P. (1974),Arch. Biochem. Biophys. 165, 388.CrossRefGoogle Scholar
  11. 11.
    Gross, E. L., and Grenier, J. (1978),Arch. Biochem. Biophys. 187, 387.CrossRefGoogle Scholar
  12. 12.
    Arnon, D. I. (1949),Plant Physiol. 24, 1.CrossRefGoogle Scholar
  13. 13.
    Mcllwain, H. (1937),J. Chem. Soc. 2, 1704.CrossRefGoogle Scholar
  14. 14.
    Knight, M., Hartman, P. E., Hartman, Z., and Young, V. M. (1979),Anal. Biochem. 95, 19.CrossRefGoogle Scholar
  15. 15.
    Baron, S. S., and Rowe, J. J. (1981),Antimicrob. Agents Chemother. 20, 814.Google Scholar
  16. 16.
    Blackwood, A. C., and Neish, A. D. (1957),Can. J. Microbiol. 3, 165.CrossRefGoogle Scholar
  17. 17.
    Ingledew, W. M., and Campbell, J. J. R. (1969),Can. J. Microbiol. 15, 535.Google Scholar
  18. 18.
    Chew, V. S. F., and Bolton, J. R. (1980),J. Phys. Chem. 84, 1903.CrossRefGoogle Scholar
  19. 19.
    Chew, V. S. F., and Bolton, J. R. (1980),J. Phys. Chem. 84, 1909.CrossRefGoogle Scholar
  20. 20.
    Morrison, M. M., Seo, E. T., Howie, J. K., and Sower, D. T. (1978),J. Am. Chem. Soc. 100, 207.CrossRefGoogle Scholar
  21. 21.
    Hisada, R., Shinkai, W., and Yagi, T. (1981)J. Appl. Biochem. 3, 535.Google Scholar
  22. 22.
    Brdicka, R., and Knoblock, E. (1941),Z. Elekhvchem. 47, 721.Google Scholar
  23. 23.
    Treadwell, G. E., Cairns, W. L., and Metzler, D. E. (1968),J. Chromatog. 35, 376.CrossRefGoogle Scholar
  24. 24.
    Cairns, W. L., and Metzler, D. E. (1971),J. Am. Chem. Soc. 93, 2772.CrossRefGoogle Scholar
  25. 25.
    Janzen, A. F., and Seibert, M. (1980)Nature 286, 584.CrossRefGoogle Scholar
  26. 26.
    Ochiai, H., Shibata, H., Sawa, Y., and Katoh, T. (1980),Proc. Natl. Acad. Sci. USA 77, 2442.CrossRefGoogle Scholar
  27. 27.
    Seibert, M., and Kendall-Tobias, M. W. (1982),Biochim. Biophys. Acta 681, 504.CrossRefGoogle Scholar
  28. 28.
    Seibert, M., Janzen, A. F., and Kendall-Tobias, M. W. (1982),Photochem. Photobiol. 35, 193.Google Scholar
  29. 29.
    Enns, K., and Burgess, W. H. (1965),J. Am. Chem. Soc. 87, 5766.CrossRefGoogle Scholar
  30. 30.
    Hutchens, J. O. (1976), inHandbook of Biochemistry and Molecular Biology, 3rd edition, I, Fasman, G. D., ed., CRC, Cleveland, OH, p. 118.Google Scholar
  31. 37.
    Rossini, F. D., Wagman, D. D., Evans, W. H., Levine, S., and Jaffe, I. (1952),Selected Values of Chemical Thermodynamic Properties, NBS Circular 500.Google Scholar
  32. 32.
    Kaplan, S., and Arntzen, C. J. (1982), inPhotosynthesis: Energy Conversion by Plants and Bacteria, I, Govindjee, ed., p. 67.Google Scholar

Copyright information

© The Humana Press Inc 1987

Authors and Affiliations

  • Douglas G. Sanderson
    • 1
  • Elizabeth L. Gross
    • 1
  • Michael Seibert
    • 2
  1. 1.Departments of Chemistry and BiochemistryThe Ohio State UniversityColumbus
  2. 2.Solar Energy Research InstituteGolden

Personalised recommendations