Advertisement

Applied Biochemistry and Biotechnology

, Volume 13, Issue 1, pp 75–83 | Cite as

Patents and literature

  • Robert J. Linhardt
  • Bohl C. P. 
  • Bender R. 
  • Duck P. D. 
  • Itakura K. 
  • Mark D. F. 
  • Lin L. S. 
  • Lu S. D. Y. 
  • Paau A. 
  • Platt S. G. 
  • Sequeira L. 
  • Paddock G. V. 
  • Riggs A. D. 
  • Rubin H. 
  • Weissman S. M. 
  • Pereira D. 
  • Sood A. 
Article
  • 24 Downloads

Keywords

Apply Biochemistry Polynucleotide Dihydrofolate Reductase Triose Phosphate Isomerase Hydrazino 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Asghar, S. S., and Ali, L. (1985), Possible Treatment of Some Genetic Deficiency Diseases—A Hypothesis.Med. Hypotheses 16, 371–375.CrossRefGoogle Scholar
  2. 2.
    Barany, F. (1985), Single-Stranded Hexameric Linkers: A System for InPhase Insertion Mutagenesis and Protein Engineering.Gene 37, 111–123.CrossRefGoogle Scholar
  3. 3.
    Carter, P., Bedouelle, H., and Winter, G. (1985), Improved Oligonucleotide Site-Directed Mutagenesis Using M13 Vectors,Nucleic Acids Res. 13, 4431–4443.CrossRefGoogle Scholar
  4. 4.
    Carter, P. J., Winter, G., Wilkinson, A. J., and Fersht, A. R. (1984), The Use of Double Mutants to Detect Structural Changes in the Active Site of the Tyrosyl-tRNA Synthetase (Bacillus stearothermophilus).Cell 38, 835–840.CrossRefGoogle Scholar
  5. 5.
    Chong, P., Hui, I., Loo, T., and Gillam, S. (1985), Structural Analysis of a New GC-Specific Insertion Element IS186.FEBS Lett. 192, 47–52.CrossRefGoogle Scholar
  6. 6.
    Clune, A., Lee, K. S., and Ferenci, T., (1984), Affinity Engineering of Maltoporin: Variants with Enhanced Affinity for Particular Ligands.Biochem. Biophys. Res. Commun. 121, 34–40.CrossRefGoogle Scholar
  7. 7.
    Dalbadie-McFarland, G., Riggs, A. D., and Richards, J. H. (1984), Directed Mutagenesis as a Technique to Study Protein Function: Application to betaLactamase.Biochem. Soc. Trans. 12, 226–228.Google Scholar
  8. 8.
    Estelle, M., Hanks, J., McIntosh, L., and Somerville, C. (1985), Site-Specific Mutagenesis of Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase. Evidence that Carbamate Formation at Lys 191 is Required for Catalytic Activity.J. Biol. Chem. 260, 9523–9526.Google Scholar
  9. 9.
    Estell, D. A., Graycar, T. P., and Wells, J. A. (1985), Engineering an Enzyme by Site-Directed Mutagenesis to be Resistant to Chemical Oxidation.J. Biol. Chem. 260, 6518–6521.Google Scholar
  10. 10.
    Fersht, A. R., and Winter, G. P. (1985), Redesigning Enzymes by Site Directed Mutagenesis.Ciba Found. Symp. 111, 204–218.Google Scholar
  11. 11.
    Fersht, A. R., Shi, J. P., Knill-Jones, J., Lowe, D. M., Wilkinson, A. J., Blow, D. M., Brick, P., Carter, P., Waye, M., and Winter, G. (1985), Hydrogen Bonding and Biological Specificity Analysed by Protein Engineering.Nature 314, 235–238.CrossRefGoogle Scholar
  12. 12.
    Fersht, A. R., Shi, J. P., Wilkinson, A. J., Blow, D. M., Carter, P., Waye, M. M. Y., and Winter, G. P. (1984), Analysis of Enzyme Structure and Activity by Protein Engineering.Angew, Chem. Ed. Engl. 23, 467–473.CrossRefGoogle Scholar
  13. 13.
    Gething, M. J., Doms, R. W., York, D., and White, J. (1986), Studies on the Mechanism of Membrane Fusion: Site-Specific Mutagenesis of the Hemagglutinin of Influenza Virus.J. Cell Biol. 102, 11–23.CrossRefGoogle Scholar
  14. 14.
    Gillam, S., Astell, C. R., Jahnke, P., Hutchison, C. A., and Smith, M. (1984), Construction and Properties of a Ribosome-Binding Site Mutation in Gene E of Luminal Diameter X174 Bacteriophage.J. Virol. 52, 892–896.Google Scholar
  15. 15.
    Glickman, B. W., and Ripley, L. S. (1984), Structural Intermediates of Deletion Mutagenesis: A Role for Palindromic DNA.Proc. Natl, Acad. Sci. USA 81, 512–516.CrossRefGoogle Scholar
  16. 16.
    Howell, E. E., Villafranca, J. E., Warren, M. S., Oatley, S.J., and Kraut, J. (1986), Functional Role of Aspartic Acid-27 in Dihydrofolate Reductase Revealed by Mutagenesis.Science 231, 1123–1128.CrossRefGoogle Scholar
  17. 17.
    Jay, E., MacKnight, D., Lutze-Wallace, C., Harrison, D., Wishart, P., Liu, W. Y., Asundi, V., Pomeroy-Cloney, L., Rommens, J., and Eglington, L., (1984). Chemical Synthesis of a Biologically Active Gene for Human Immune Interferon-gamma. Prospect for Site-Specific Mutagenesis and Structure-Function Studies.J. Biol. Chem. 259, 6311–6317.Google Scholar
  18. 18.
    Kaiser, E. T., Lawrence, D. S., and Rokita, S. E. (1985), The Chemical Modification of Enzymatic Specificity.Annu. Rev. Biochem. 54, 565–595.CrossRefGoogle Scholar
  19. 19.
    Leatherbarrow, R. J., Fersht, A. R., and Winter, G. (1985), Transition-State Stabilization in the Mechanism of Tyrosyl-tRNA Synthetase Revealed by Protein Engineering.Proc. Natl. Acad. Sci. USA 82, 7840–7844.CrossRefGoogle Scholar
  20. 20.
    Liang, S. M., Thatcher, D. R., Liang, C. M., and Allet, B. (1986), Studies of Structure-Activity Relationships of Human Interleukin-2.J. Biol. Chem. 261, 334–337.Google Scholar
  21. 21.
    Lowe, D. M., Fersht, A. R., Wilkinson J., Carter, P., and Winter, G. (1985), Probing Histidine-Substrate Interactions in Tyrosyl-tRNA Synthetase Using Asparagine and Glutamine replacements.Biochemistry 24, 5106–5109.CrossRefGoogle Scholar
  22. 22.
    Matthews, D. A., Bolin, J. T., Burridge, J. M., Filman, D. J., Volz, K. W., and Kraut, J. (1985), Dihydrofolate Reductase. The Stereochemistry of Inhibitor Selectivity.J. Biol. Chem. 260, 392–399.Google Scholar
  23. 23.
    Matthews, D. A., Bolin, J. T., Burridge, J. M., Filman, D. J., Volz, K. W., Kaufman, B. T., Beddell, C. R., Champness, J. N., Stammers, D. K., and Kraut, J. (1985), Refined Crystal Structures ofEscherichia coli and Chicken liver Dihydrofolate Reductase Containing Bound Trimethoprim.J. Biol. Chem. 260, 381–391.Google Scholar
  24. 24.
    Maugh, T. H. (1984), Need a Catalyst? Design an Enzyme.Science 223, 269–271.CrossRefGoogle Scholar
  25. 25.
    Mead, D. A., Skorupa, E. S., and Kemper, B. (1985), Single-Stranded DNA SP6 Promoter Plasmids for Engineering Mutant RNAs and Proteins: Synthesis of a ‘Stretched’ Preproparathyroid Hormone.Nucleic Acids Res. 13, 1103–1118.CrossRefGoogle Scholar
  26. 26.
    Milstein, C. (1986), From Antibody Structure to Immunological Diversification of Immune Response.Science 231, 1261–1268.CrossRefGoogle Scholar
  27. 27.
    Nagai, K. (1985), Protein Engineering.Tanpakushitsu Kakusan Koso 30, 950–962.Google Scholar
  28. 28.
    Newman, A. J., Lin, R. J., Cheng, S. C., and Abelson, J. (1985), Molecular Consequences of Specific Intron Mutations on yeast mRNA Splicing In Vivo and In Vitro.Cell 42, 335–344.CrossRefGoogle Scholar
  29. 29.
    Neuhaus, J. M., Soppa, J., Wright, J. K., Riede, I., Blocker, H., Frank, R., and Overath, P. (1985), Properties of a Mutant Lactose Carrier ofEscherichia coli with a Cysl48—Serl48 substitution.FEBS Lett. 185, 83–88.CrossRefGoogle Scholar
  30. 30.
    Nisbet, I. T., Beilharz, M. W., Hertzog, P. J., Tymms, M. J., and Linnane, A. W. (1985), Single Amino Acid Substitutions at Conserved Residues of Human Interferon-alpha can Effect Antiviral Specific Activity.Biochem. Int. 11, 301–309.Google Scholar
  31. 31.
    Nomura, A., Negishi, K., and Hayatsu, H. (1985), Direct-Acting Mutagenicity of N4-Aminocytidine Derivatives Bearing Alkyl Groups at the Hydrazino Nitrogens.Nucleic Acids. Res. 13, 8893–8899.CrossRefGoogle Scholar
  32. 32.
    Paluh, J. L., Zalkin, H., Betsch, D., and Weith, H. L. (1985), Study of Anthranilate Synthase Function by Replacement of Cysteine 84 Using SiteDirected Mutagenesis.J. Bid. Chem. 260, 1889–1894.Google Scholar
  33. 33.
    Peden, K. W., and Pipase, J. M. (1985), Site-Directed Mutagenesis of the Simian Virus 40 Large T-Antigen Gene: Replication-Defective Amino Acid Substitution Mutants that Retain the Ability to Induce Morphological Transformation.J. Virol. 55, 1–9.Google Scholar
  34. 34.
    Petsko, G. A., Davenport, R. C., Jr., Frankel, D., and RaiBhandary, U. L. (1984), Probing the Catalytic Mechanism of Yeast Triose Phosphate Isomerase by Site-Specific Mutagenesis.Biochem. Soc. Trans. 12, 229–232.Google Scholar
  35. 35.
    Pielak, G. J., Mauk, A. G., and Smith, M. (1985), Site-Directed Mutagenesis of Cytochromec Shows that an Invariant Phe is not Essential For Function.Nature 313, 152–154.CrossRefGoogle Scholar
  36. 36.
    Richardson, T. (1985), Chemical Modifications and Genetic Engineering of Food Proteins.J. Dairy Sci. 68, 2753–2762.CrossRefGoogle Scholar
  37. 37.
    Robey, E. A., and Schachman, H. K. (1984), Site-Specific Mutagenesis of Aspartate Transcarbamoylase. Replacement of Tyrosine 165 in the Catalytic Chain by Serine Reduces Enzymatic Activity.J. Biol. Chem. 259, 11180–11183.Google Scholar
  38. 38.
    Salemme, F. R. (1985), Engineering Aspects of Protein Structure.Ann. NY Acad. Sci. 439, 97–106.CrossRefGoogle Scholar
  39. 39.
    Shiroishi, T., Evans, G. A., Appella, E., and Ozato, K. (1985), In Vitro Mutagenesis of a Mouse MHC Class I Gene for the Examination of Structure-Function Relationships.J. Immunol. 134, 623–629.Google Scholar
  40. 40.
    Shi, J. P., and Fersht, A. R. (1984), Fidelity of DNA Replication Under Conditions Used for Oligodeoxynucleotide-Directed Mutagenesis.J. Mol. Biol. 177, 269–278.CrossRefGoogle Scholar
  41. 42.
    Taylor, H. C., Komoriya, A., and Chaiken, I. M. (1985), Crystallographic Structure of an Active, Sequence-Engineered Ribonuclease.Proc. Natl. Acad. Sci. USA 82, 6423–6426.CrossRefGoogle Scholar
  42. 42.
    Tikhonenko, T. I. (1984), Prospects and Achievements of Genetic Engineering in Development of Antiviral Vaccines.Mol. Biol. (Mosk) 18, 176–188.Google Scholar
  43. 43.
    Vane, J., and Cuatrecasas, P. (1984), Genetic Engineering and Pharmaceuticals [News].Nature 312, 303–305.CrossRefGoogle Scholar
  44. 44.
    Villafranca, J. E., Howell, E. E., Voet, D. H., Strobel, M. S., Ogden, R. C., Abelson, J. N., and Kraut, J. (1983), Directed Mutagenesis of Dihydrofolate Reductase.Science 222, 782–788.CrossRefGoogle Scholar
  45. 45.
    Waye, M. M., Verhoeyen, M. E., Jones, P. T., and Winter, G. (1985), EcoK Selection Vectors for Shotgun Cloning into M13 and Deletion Mutagenesis.Nucleic Acids. Res. 13, 8561–8571.CrossRefGoogle Scholar
  46. 46.
    Wang, A., Lu, S. D., and Mark, D. F. (1984), Site-Specific Mutagenesis of the Human Interleukin-2 Gene: Structure-Function Analysis of the Cysteine Residues.Science 224, 1431–1433.CrossRefGoogle Scholar
  47. 47.
    Wells, J. A., Vasser, M., and Powers, D. B. (1985), Cassette Mutagenesis: An Efficient Method for Generation of Multiple Mutations at Defined Sites.Gene 34, 315–323.CrossRefGoogle Scholar
  48. 48.
    Winter, G., Carter, P., Waye, M. M., Blow, D. M., Wilkinson, A. J., Shi, J. P., and Fersht, A. R. (1984), Genetic Dissection of Tyrosyl-tRNA Synthetase.Biochem. Soc. Trans. 12, 224–225.Google Scholar
  49. 49.
    Winter, G., Fersht, A. R., Wilkinson, A. J., Zoller, M., and Smith, M. (1982), Redesigning Enzyme Structure by Site-Directed Mutagenesis: Tyrosyl tRNA synthetase and ATP binding.Nature 229, 756–758.CrossRefGoogle Scholar
  50. 50.
    Wilkinson, A. J., Fersht, A. R., Blow, D. M., Carter, P., and Winter, G. (1984), A Large Increase in Enzyme-Substrate Affinity by Protein Engineering.Nature 307, 187–188.CrossRefGoogle Scholar
  51. 51.
    Wilkinson, A. J., Fersht, A. R., Blow, D. M., and Winter, G. (1983), SiteDirected Mutagenesis as a Probe of Enzyme Structure and Catalysis: Tyrosyl-tRNA Synthetase Cysteine-35 to Glycine-35 Mutation.Biochemistry 22, 3581–3586.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1986

Authors and Affiliations

  • Robert J. Linhardt
    • 1
  • Bohl C. P. 
  • Bender R. 
  • Duck P. D. 
  • Itakura K. 
  • Mark D. F. 
  • Lin L. S. 
  • Lu S. D. Y. 
  • Paau A. 
  • Platt S. G. 
  • Sequeira L. 
  • Paddock G. V. 
  • Riggs A. D. 
  • Rubin H. 
  • Weissman S. M. 
  • Pereira D. 
  • Sood A. 
  1. 1.Division of Medicinal and Natural Products Chemistry, College of PharmacyUniversity of IowaIowa City

Personalised recommendations