Skip to main content
Log in

Characterization of immobilized glucose oxidase—catalase and their deactivation in a fluid-bed reactor

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

2-Amino-4-chloro-s-triazine, a derivative of DEAE-cellulose, and acrolein/styrene copolymer were used as supports for the immobilization of glucose oxidase and catalase after being modified with diaminohexane followed by glutaraldehyde. Immobilization was carried out with optimum glucose oxidase-catalase ratios. The activity variations of the immobilized dual-enzyme systems were investigated in relation to pH and temperature. Time-dependent gluconic acid production resulting from the oxidation of glucose was monitored in a recycling fluid-bed reactor. The deactivation rates of glucose oxidase and catalase were investigated according to the first-order reaction kinetics depending on the presence of the intermediate product H2O2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Holstein, A. G. and Holsing G. C. (1962), US Patent 3,050,444 appl. Dawes Labr.

  2. Kobayashi, T., Ban, T., Shimizu, S., Ohmiya, K., and Shimizu, S. (1978),J. Ferment. Technol. 56, 6, 506.

    CAS  Google Scholar 

  3. Hartmeier, W. (1979),Biotechnol. Lett. 1, 21.

    Article  CAS  Google Scholar 

  4. Nurachi, T., Sakaguchi, Y., Tabata, M., Sugahara, M., and Endo, J. (1980),Biochimie,62, 581.

    Article  Google Scholar 

  5. Goldstein, L., and Manecke, G. (1976),Applied Biochemistry and Bioengineering, vol. I, Wingard, L. B., Katchalski Katzir, E., and Goldstein G., eds., Academic, New York, pp. 23–127.

    Google Scholar 

  6. Rosevear, A. (1984),J. Chem. Tech. Biotechnol. 34, 8, 127.

    Google Scholar 

  7. Greenfield, P. F. and Laurence, R. L. (1975),Biotechnol. Bioeng. 17, 285.

    Article  Google Scholar 

  8. Angwo, L. D. (1982),Biotechnol. Bioeng. 16, 897.

    Google Scholar 

  9. Kühn, W., Kirstein, D., and Mohr, P. (1980),Acta Biol. Med. Germ. 39, 1121.

    Google Scholar 

  10. Kadish, A. H., Litle, R., and Sternberg, J. C. (1968),Clin. Chem. 14, 116.

    CAS  Google Scholar 

  11. Bergmeyer, H. U., Gawehn, K., and Grassi, M. (1970),Methoden der Enzymatischen Analyse, vol. 3, Bergmeyer, H. H. ed., Academic, New York, pp. 107–112.

    Google Scholar 

  12. Putter, J., and Strufe, R. (1967),Clin. Chim. Acta. 15, 159.

    Article  Google Scholar 

  13. Kay, G. and Lilly, M. D. (1970),Biochim. Biophys. Acta 198, 276.

    CAS  Google Scholar 

  14. Bouin, J. C., Dudgeon, P. H., and Hultin, H. O. (1976),J. Food. Sci. 41, 886.

    Article  CAS  Google Scholar 

  15. Buchholz, K. and Gödelmann, B. (1978),Biotechnol. Bioeng. 20, 1201.

    Article  CAS  Google Scholar 

  16. Kleppe, K. (1966),Biochemistry 5, 139.

    Article  CAS  Google Scholar 

  17. Altomare, R. E., Kohler, J., Greenfield, P. F., and Kittrell, J. R. (1974),Biotechnol. Bioeng. 16, 1659.

    Article  CAS  Google Scholar 

  18. Goldstein, L. (1972),Biochemistry 11, 4072.

    Article  CAS  Google Scholar 

  19. Tarhan, L. and Pekin, B. (1983),Biotechnol. Bioeng. 25, 2777.

    Article  CAS  Google Scholar 

  20. Prenosil, J. E. (1979),Biotechnol. Bioeng. 21, 89.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarhaqn, L., Telefoncu, A. Characterization of immobilized glucose oxidase—catalase and their deactivation in a fluid-bed reactor. Appl Biochem Biotechnol 26, 45–57 (1990). https://doi.org/10.1007/BF02798392

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02798392

Index entries

Navigation