Cell Biophysics

, Volume 11, Issue 1, pp 269–277 | Cite as

The mutual binding exclusion mechanism in active transport across biological membranes

  • Giuseppe Inesi


The coupling mechanism of sarcoplasmic reticulum ATPase is based on the reciprocal influence of calcium binding and phosphorylation domains. Cooperative calcium binding activates the enzyme, permitting utilization of ATP by transfer of its terminal phosphate to the enzyme. Occupancy of the phosphorylation domain then produces internalization and dissociation of the bound calcium. Hydrolytic cleavage of Pi completes the catalytic and transport cycle. Conversely, the phosphorylated enzyme intermediate can be formed with Pi in the absence of Ca2+. This intermediate is then destabilized by calcium binding, permitting formation of ATP by phosphoryl transfer to ADP.

Index Entries

Abstract introduction calcium binding to the SR ATPase effect of enzyme phosphorylation on calcium binding coupling mechanism final remarks 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hasselbach, W., and Makinose, M. (1961),Biochem. Zeitschrift 333, 518.Google Scholar
  2. 2.
    Ebashi, S., and Lipman, F. (1962),J. Cell Biol. 14, 389.CrossRefGoogle Scholar
  3. 3.
    Dux, L., and Martonosi, A. (1983),J. Biol. Chem. 258, 2599.PubMedGoogle Scholar
  4. 4.
    Hill, T. L., and Inesi, G. (1982),Proc. Natl. Acad. Sci. USA 79, 3978.PubMedCrossRefGoogle Scholar
  5. 5.
    Inesi, G., and Hill, T. L. (1983),Biophys. J. 44, 271.PubMedCrossRefGoogle Scholar
  6. 6.
    Yamamoto, T., and Tonomura, Y. (1968),J. Biochem. (Tokyo)64, 137.Google Scholar
  7. 7.
    Bastide, F., Meissner, G., Fleischer, S., and Post, R. (1973),J. Biol. Chem. 248, 8385.PubMedGoogle Scholar
  8. 8.
    Degani, C., and Boyer, P. (1973),J. Biol. Chem. 248, 8222.PubMedGoogle Scholar
  9. 9.
    Inesi, G., Watanabe, T., Coan, C., and Murphy, A. (1982),Ann. NY Acad. Sci. 402, 515.PubMedCrossRefGoogle Scholar
  10. 10.
    Coan, C., Verjovski-Almeida, S., and Inesi, G. (1979),J. Biol. Chem. 254, 2968.PubMedGoogle Scholar
  11. 11.
    Inesi, G. (1985),Ann. Rev. Physiol. 47, 573.CrossRefGoogle Scholar
  12. 12.
    Dupont, Y., and Bennett, N. (1982),FEBS Lett. 139, 237.PubMedCrossRefGoogle Scholar
  13. 13.
    Medda, P., and Hasselbach, W. (1983),Eur. J. Biochem. 137, 7.PubMedCrossRefGoogle Scholar
  14. 14.
    Inesi, G., Lewis, D., and Murphy, A. (1984),J. Biol. Chem. 259, 996.PubMedGoogle Scholar
  15. 15.
    Fernandez-Belda, F., Garcia de Ancos, J., and Inesi, G. (1986),Biochem. Biophys. Acta 854, 257.PubMedCrossRefGoogle Scholar
  16. 16.
    de Meis, L., and Inesi, G. (1985),Biochemistry 24, 922.PubMedCrossRefGoogle Scholar
  17. 17.
    Masuda, H., and de Meis, L. (1973),Biochemistry 12, 4581.PubMedCrossRefGoogle Scholar
  18. 18.
    Knowles, A., and Racker, E. (1975),J. Biol. Chem. 250, 1949.PubMedGoogle Scholar
  19. 19.
    Jencks, W. (1980),Adv. Enzymol. 51, 75.PubMedGoogle Scholar
  20. 20.
    Hill, T. L. (1950),J. Chem. Phys. 18, 246.CrossRefGoogle Scholar
  21. 21.
    Hill, T. L., and Eisenberg, E. (1981),Q. Rev. Biophys. 14, 1.Google Scholar
  22. 22.
    Nakamoto, R. K., and Inesi, G. (1986),FEBS Lett. 194, 258.PubMedCrossRefGoogle Scholar
  23. 23.
    Hill, T. L. (1983),Proc. Natl. Acad. Sci. USA 80, 2589.PubMedCrossRefGoogle Scholar
  24. 24.
    Hill, T. L. (1983),Proc. Natl. Acad. Sci. USA 80, 2922.PubMedCrossRefGoogle Scholar
  25. 25.
    Fernandez-Belda, F., and Inesi, G. (1986),Biochemistry 25, 8083.PubMedCrossRefGoogle Scholar
  26. 26.
    Hill, T. L. (1977),Free Energy Transduction in Biology, Academic, NY.Google Scholar

Copyright information

© Humana Press Inc. 1987

Authors and Affiliations

  • Giuseppe Inesi
    • 1
  1. 1.Department of Biological ChemistryUniversity of Maryland School of MedicineBaltimore

Personalised recommendations