Cell Biophysics

, Volume 11, Issue 1, pp 91–97 | Cite as

The aggregation of reverse micelles

A computer simulation
  • Anna C. Balazs
  • Frank E. Karasz
  • William J. MacKnight


We have developed a computer simulation to model the formation of reverse micelles in two dimensions. Several of the qualitative results obtained from these calculations agree with experimental observations. Specifically, we have shown that the chain length has a large influence in determining the size and shape of the aggregate. We predict the existence of a critical tail length: Chains below this value will form an extended lamella-like structure, whereas chains longer than this value will form clusters that appear ellipsoid or circular in cross-section. Finally, we obtained a scaling law that relates the aggregation number (N) to the length of the tail (L):N∼L −1.14. A physical model to account for the observed exponent will be developed in a future paper.

Index Entries

Reverse micelles inverse micelles micellization surfactant aggregation self-associating systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balazs, A. C., Anderson, C., and Muthukumar, M., in press.Macromolecules.Google Scholar
  2. 2.
    Israelachvili, J. N. (1985),Intermolecular and Surface Forces, With Applications to Colloidal and Biological Systems, Academic, NY.Google Scholar
  3. 3.
    Menger, F. (1979),Acc. Chem. Res. 12, 111.CrossRefGoogle Scholar
  4. 4.
    Fendler, J. H. and Fendler, E. J. (1975),Catalysis in Micellar and Macromolecular Systems, Academic, NY.Google Scholar
  5. 5.
    Shinoda, K., Nakagawa, T., Mamamushi, B., and Isemura, T. (1963),Colloidal Surfactants, Academic, NY.Google Scholar
  6. 6.
    Schelly, Z. A. (1983), inAggregation Processes in Solution (Wyn-Jones, E. and Gormally, J., eds.), Elsevier, Amsterdam, pp. 140–150.Google Scholar
  7. 7.
    Fendler, J. H. (1982),Membrane Mimetric Chemistry, John Wiley, NY, pp. 55–71.Google Scholar
  8. 8.
    Eicke, H.-F. (1980), inMicelles (Dewar, M. J. S., ed.), Springer-Verlag, Berlin, pp. 85–146.CrossRefGoogle Scholar
  9. 9.
    Lindman, B., and Wennerström, H. (1979),Physics Reports 52, 1.CrossRefGoogle Scholar
  10. 10.
    Kon-no, K. and Kitahara, A. (1971),J. Colloid Interface Sci. 35, 636.CrossRefGoogle Scholar
  11. 11.
    O’Connor, C. J. and Lomax, T. D. (1983),Tetra. Letts. 24, 2917.CrossRefGoogle Scholar
  12. 12.
    Hill, T. L. (1963, 1964),Thermodynamics of Small Systems, Benjamin, NY.Google Scholar
  13. 13.
    Zulauf, M. and Eicke, H.-F. (1979),J. Phys. Chem. 83, 480.CrossRefGoogle Scholar
  14. 14.
    Missel, P. J., Mazer, N. A., Benedek, G. B., and Carey, M. C. (1983),J. Phys. Chem. 87, 1264.CrossRefGoogle Scholar
  15. 15.
    Family, F. (1984),Kinetics of Aggregation and Gelation, North-Holland, NY.Google Scholar
  16. 16.
    Domb, C. (1962),Advan. Chem. Phys. 15, 229.CrossRefGoogle Scholar
  17. 17.
    Verdier, P. H. and Stockmayer, W. H. (1962),J. Chem. Phys. 36, 227.CrossRefGoogle Scholar
  18. 18.
    Holhorst, H. J. and Deutch, J. M. (1975),J. Chem. Phys. 63, 5153.CrossRefGoogle Scholar
  19. 19.
    Debye, P. and Prins, W. (1958),J. Colloid Sci. 13, 86.CrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1987

Authors and Affiliations

  • Anna C. Balazs
    • 1
  • Frank E. Karasz
    • 1
  • William J. MacKnight
    • 1
  1. 1.Polymer Science and EngineeringUniversity of MassachusettsAmherst

Personalised recommendations