Induction of metallothionein in rat tissues following subchronic exposure to mercury shown by radioimmunoassay

  • Canice V. Nolan
  • Zahir A. Shaikh
Body Status from Trace Elements in Blood, Urine, Skin, and Hair


Although the analysis of metallothionein (MT) by radioimmunoassay (RIA) is not a common technique, its use is preferred over other methods since it offers the advantages of sensitivity and specificity. In this paper we present data on the basal levels of MT in rat tissues and physiological fluids of female Sprague-Dawley rats. The mean basal MT concentrations of the following organs and fluids were determined by RIA to be: liver (9.8 μg/g), kidney (68 μ/g), brain (0.8 μg/g), spleen (1.0 μg/g), heart (5.4 μg/g), plasma (11 ng/ml), and urine (200–300 μg/g creatinine). Following subcutaneous exposure to inorganic mercury (0.2 μmol/kg/d, 5 d a week for up to 4 wk), the metal accumulated primarily in the kidney. There was also a simultaneous accumulation of zinc in the liver and of zinc and copper in the kidney. Induction of MT did take place in liver, kidney, brain, and spleen. No increases in the MT contents of blood and urine were noted. The excess zinc and copper in the kidney of exposed animals were found to be associated predominantly with MT. No overt signs of mercury toxicity were noted in these animals and the incidence of proteinurea was nil. The data are discussed with reference to methods of MT determination in animal tissues and in relation to mercury metabolism and toxicity.

Index Entries

Metallothionein, induction in/by mercury, rat tissues mercury, subchronic exposure radioimmunoassay metallothionein, determination by radioimmunoassay mercury metabolism and toxicity copper zinc rat 


  1. 1.
    M. Berlin, inHandbook on the Toxicology of Metals, L. Friberg, G. F. Nordberg, and V. B. Vouk, eds., Elsevier, Amsterdam, 1979, pp. 503–530.Google Scholar
  2. 2.
    C. E. Ganote, K. A. Reimer, and R. B. Jennings,Lab. Invest. 31, 633 (1974).PubMedGoogle Scholar
  3. 3.
    J. K. Piotrowski, B. Trojanowska, J. M. Wisniewska-Knypl, and W. Bolanowska,Toxicol. Appl. Pharmacol. 27, 11 (1974).PubMedCrossRefGoogle Scholar
  4. 4.
    Z. A. Shaikh, O. J. Lucis, and R. L. Coleman,Proc. 7th Conf. Trace Substances in Environmental Health, D. D. Hemphill, ed., University of Missouri, Columbia, MO, 1973, pp. 313–321.Google Scholar
  5. 5.
    M. Webb and L. Magos,Chem. Biol. Interact. 21, 215 (1978).PubMedCrossRefGoogle Scholar
  6. 6.
    G. Lorenzon, E. Marafante, and E. Sabbioni,Euro. Appl. Res. Reps. (in press).Google Scholar
  7. 7.
    Z. A. Shaikh and J. C. Smith,Abstracts, Internat. Conf. Heavy Metals in the Environment, Toronto, 1975, pp. B108–109.Google Scholar
  8. 8.
    D. R. Winge, R. Premakumar, and K. V. Rajagopalan,Arch. Biochem. Biophys. 170, 242 (1975).PubMedCrossRefGoogle Scholar
  9. 9.
    M. G. Cherian and T. W. Clarkson,Chem. Biol. Interact. 12, 109 (1976).PubMedCrossRefGoogle Scholar
  10. 10.
    M. Martin and F. O. Brady,Proc. South Dakota Acad. Sci. 56, 72 (1977).Google Scholar
  11. 11.
    J. K. Piotrowski, B. Trojanowska, and A. Sapota,Arch. Tocicol. 32, 351 (1974).CrossRefGoogle Scholar
  12. 12.
    P. D. Whanger and J. T. Deagen,Environ. Res. 30, 372 (1983).PubMedCrossRefGoogle Scholar
  13. 13.
    Y. H. Lee, Z. A. Shaikh and C. Tohyama,Toxicology 27, 337 (1983).PubMedCrossRefGoogle Scholar
  14. 14.
    J. H. R. Kagi, and M. Nordberg, eds.Metallothionein, Birkhauser Verlag, Basel, 1979, pp. 41–124.Google Scholar
  15. 15.
    Y. Suzuki,Ind. Health 10, 56 (1972).CrossRefGoogle Scholar
  16. 16.
    J. D. Bogden, F. W. Kemp, R. A. Troiano, B. S. Jortner, C. Timpone, and D. Guiliani,Environ. Res. 21, 350 (1980).PubMedCrossRefGoogle Scholar
  17. 17.
    C. V. Nolan and Z. A. Shaikh,Anal. Biochem. 154, 213 (1986).PubMedCrossRefGoogle Scholar
  18. 18.
    C. Tohyama and Z. A. Shaikh,Fundam. Appl. Toxicol. 1, 1 (1981).PubMedGoogle Scholar
  19. 19.
    M. M. Bradford,Anal. Biochem. 72, 248 (1976).PubMedCrossRefGoogle Scholar
  20. 20.
    D. Heingard and G. Tiderstrom,Clin. Chim. Acta. 43, 305 (1973).CrossRefGoogle Scholar
  21. 21.
    G. P. Daston, R. J. Kavlock, E. M. Rogers, and B. Carver,Toxicol. Appl. Pharmacol. 71, 24 (1983).PubMedCrossRefGoogle Scholar
  22. 22.
    Z. A. Shaikh and C. Tohyama,Environ. Health. Perspect. 54, 171 (1984).PubMedCrossRefGoogle Scholar
  23. 23.
    S. Onasaka and M. G. Cherian,Toxicol. Appl. Pharmacol. 63, 270 (1982).CrossRefGoogle Scholar
  24. 24.
    M. P. Waalkes and C. D. Klaasen,Toxicol. Appl. Pharmacol. 74, 314 (1984).PubMedCrossRefGoogle Scholar
  25. 25.
    D. L. Eaton,Toxicol. Appl. Pharmacol. 78, 158 (1985).PubMedCrossRefGoogle Scholar
  26. 26.
    J. A. Szymanska and A. J. Zelazowski,Environ. Res. 19, 121 (1974).CrossRefGoogle Scholar
  27. 27.
    E. Sabbioni and E. Marafante,Environ. Physiol. Biochem. 5, 465 (1975).PubMedGoogle Scholar
  28. 28.
    J. D. Otvos and I. M. Armitage,Proc. Natl. Acad. Sci. USA,77, 7094 (1980).PubMedCrossRefGoogle Scholar
  29. 29.
    K. B. Nielson and D. R. Winge,J. Biol. Chem. 259, 4941 (1984).PubMedGoogle Scholar

Copyright information

© The Humana Press Inc 1987

Authors and Affiliations

  • Canice V. Nolan
    • 1
  • Zahir A. Shaikh
    • 1
  1. 1.Department of Pharmacology and ToxicologyUniversity of Rhode IslandKingston

Personalised recommendations