Journal d’Analyse Mathématique

, Volume 46, Issue 1, pp 194–220 | Cite as

Pseudo-anosov Teichmueller mappings

  • A. Marden
  • K. Strebel


Riemann Surface Homotopy Class Quadratic Differential Simple Loop Vertical Side 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Bers,An extremal problem for quasiconformal mappings and a theorem by Thurston, Acta Math.141 (1978), 73–98.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    A. Fathi, F. Landenbach and V. Poénaru,Travaux de Thurston sur les surfaces, Astérisque66–67 (1979).Google Scholar
  3. 3.
    J. Gilman,On the Nielsen type and the classification for the mapping class group, Adv. in Math.40 (1981), 68–96.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    J. Gilman,Determining Thurston classes, Trans. Amer. Math. Soc.272 (1982), 669–675.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    S. Karlin,A First Course in Stochastic Processes, Appendix, Academic Press, New York, 1966.Google Scholar
  6. 6.
    A. Marden and K. Strebel,On the ends of trajectories, inDifferential Geometry and Complex Analysis, H. E. Rauch Memorial Volume, Springer-Verlag, 1985, pp. 195–204.Google Scholar
  7. 7.
    A. Marden and K. Strebel,Asymptotic convergence of trajectories of quadratic differentials, Volume in honour of Olli Lehto, Ann Acad. Sci. Fenn. Series A.I.10 (1985), 365–376.MATHMathSciNetGoogle Scholar
  8. 8.
    A. Marden and K. Strebel,Geodesics for quadratic differentials on punctured surfaces, Volume in honour of Steve Warschawski, to appear.Google Scholar
  9. 9.
    R. Miller,Nielsen’s viewpoint on geodesic laminations, Adv. in Math.45 (1982), 189–212.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    J. Nielsen,Surface transformation classes of algebraically finite type, Math.-Fys. Medd. Danske Vid. Selsk.XXI, no. 2 (1944), 1–89.Google Scholar
  11. 11.
    J. C. Oxtoby,Ergodic sets, Bull. Amer. Math. Soc.58 (1952), 116–136.MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    K. Strebel,Quadratic Differentials, Ergebnisse der Mathematik, 3. Folge, Band 5, Springer-Verlag, 1984.Google Scholar
  13. 13.
    W. Thurston,On the geometry and dynamics of diffeomorphisms of surfaces I, preprint.Google Scholar
  14. 14.
    M. Handel and W. P. Thurston,New proofs of some results of Nielsen, Adv. in Math.56 (1985), 173–191.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 1986

Authors and Affiliations

  • A. Marden
    • 1
  • K. Strebel
    • 2
  1. 1.School of MathematicsUniversity of MinnesotaMinneapolisUSA
  2. 2.Mathematisches Institut der UniversitÄt ZurichZurichSwitzerland

Personalised recommendations