Journal d’Analyse Mathématique

, Volume 46, Issue 1, pp 80–93 | Cite as

On Haar measurable additive maps on Β(N)

  • Corneliu Constantinescu


Let Β(N) be the power set of the set of natural numbers endowed with the usual structure of a compact abelian group and let Μ be the normed Haar measure on it. The paper studies the properties of Μ-measurable additive maps of Β(N) into Hausdorff abelian groups.


Commutative Group Radon Measure Finite Subset Compact Abelian Group Infinite Subset 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. J. M. Andersen and J. P. R. Christensen,Some results on Borel structures with applications to subseries convergence in abelian topological groups, Isr. J. Math.15 (1973), 414–420.MATHMathSciNetGoogle Scholar
  2. 2.
    C. Burstin,Die Spaltung des Kontinuums in c im L-Sinne nicht messbarer Mengen, Kaiserliche Akademie der Wissenschaften in Wien, Mathematisch-naturwissenschaftliche Klasse, Sitzungsberichte, Abt. IIa,125 (1916), 209–217.Google Scholar
  3. 3.
    J. P. R. Christensen,Borel structures and topological zero-one law, Math. Scand.29 (1971), 245–255.MathSciNetGoogle Scholar
  4. 4.
    W. H. Graves,Universal Lusin measurability and subfamily summable families in Abelian topological groups, Proc. Amer. Math. Soc.73 (1979), 45–50.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    I. Labuda,Universal measurability and summable families in tvs, Proc. Kon. Ned. Acad. v. Wet. Series A82 (1979), 27–34.MathSciNetGoogle Scholar
  6. 6.
    W. Sierpiński and N. Lusin,Sur une décomposition d’un intervalle en une infinité non dénombrable d’ensembles non measurable, C.R. Acad. Sci. Paris165 (1917), 422–426.Google Scholar

Copyright information

© Hebrew University of Jerusalem 1986

Authors and Affiliations

  • Corneliu Constantinescu
    • 1
  1. 1.Department of MathematicsETH ZentrumZurichSwitzerland

Personalised recommendations