Cell Biophysics

, Volume 23, Issue 1–3, pp 3–89 | Cite as

Adhesion molecules and their role in cancer metastasis

  • Robert M. Lafrenie
  • Michael R. Buchanan
  • F. William Orr


This article describes various adhesion molecules and reviews evidence to support a mechanistic role for adhesion molecules in the process of cancer metastasis. A variety of evidence supports the involvement of specific adhesion molecules in metastasis.
  1. 1.

    For example, some cancer cells metastasize to specific organs, irrespective of the first organ encountered by the circulating cancer cells. This ability to colonize a specific organ has been correlated with the preferential adhesion of the cancer cells to endothelial cells derived from the target organ. This suggests that cancer cell/endothelial cell adhesion is involved in cancer cell metastasis and that adhesion molecules are expressed on the endothelium in an organ-specific manner.

  2. 2.

    Further, inclusion of peptides that inhibit cell adhesion, such as the YIGSR- or RGD-containing peptides, is capable of inhibiting experimental metastasis.

  3. 3.

    Metastasis can be enhanced by acute or chronic inflammation of target vessels, or by treatment of animals with inflammatory cytokines, such as interleukin-1. In vitro, cancer cell/endothelial cell adhesion can be enhanced by pretreating the endothelial cell monolayer with cytokines, such as interleukin-1 or tumor necrosis factor-α. This suggests that, in addition to organ-specific adhesion molecules, a population of inducible endothelial adhesion molecules is involved and is relevant to metastasis.

  4. 4.

    Further support for this model is found in the comparison to leukocyte/endothelial adhesion during leukocyte trafficking. Convincing evidence exists, both in vivo and in vitro, to demonstrate an absolute requirement for leukocyte/endothelial adhesion before leukocyte extravasation can occur. The relevance of this comparison to metastasis is reinforced by the observation that some of the adhesion molecules involved in leukocyte/endothelial adhesion are also implicated in cancer cell/endothelial adhesion. The involvement of adhesion molecules suggests a potential therapy for metastasis based on interrupting adhesive interactions that would augment other treatments for primary tumors.


Index Entries

Metastasis cancer endothelium adhesion integrins selectins 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Weiss, L. (1985)Principles of Metastasis, Academic, Orlando, FL.Google Scholar
  2. 2.
    Dao, T. L. and Kovaric, J. (1962) Incidence of pulmonary and skin metastasis in women with breast cancer who received postoperative irradiation.Surgery 52, 203–212.Google Scholar
  3. 3.
    Fisher, B., Slack, N. H., Cavanaugh, P. J., Gardner, B., and Ravdin, R. G. (1970) Postoperative radiotherapy in the treatment of breast cancer: results of the NSABP clinical trial.Ann. Surg. 172, 711–741.PubMedCrossRefGoogle Scholar
  4. 4.
    van Putten, L. M., Kram L. K. J., van Dierendonck, H. H. C., Smink, T., and Fuzy, M. (1975) Enhancement by drugs of metastatic lung nodule formation after intravenous tumour cell injection.Int. J. Cancer 15, 588–595.PubMedCrossRefGoogle Scholar
  5. 5.
    Milas, L., Hirata, H., Hunter, N., and Peters, L. J. (1988) Effect of radiation-induced injury of tumour bed stroma on metastatic speread of murine sarcomas and carcinomas.Cancer Res. 48, 2116–2122.PubMedGoogle Scholar
  6. 6.
    Poupon, M. F., Pauwels, C., Jasmin, C., Antoine, E., Lascaux, V., and Rosa, B. (1984) Amplified pulmonary metastases of a rat rhabdosarcoma in response to nitrosourea treatment.Cancer Treat. Rep. [CNM],68, 749–758.Google Scholar
  7. 7.
    Orr, F. W., Adamson, I. Y. R., and Young, L. (1986) Promotion of pulmonary metastasis in mice by bleomycin-induced endothelial injury.Cancer Res. 46, 891–897.PubMedGoogle Scholar
  8. 8.
    Orr, F. W. and Warner, D. J. A. (1987) Effects of neutrophil-mediated pulmonary endothelial injury on the localization and metastasis of circulating Walker carcinosarcoma cells.Invasion Metastasis 7, 183–196.PubMedGoogle Scholar
  9. 9.
    Vincic, L., Orr, F. W., Warner, D. J. A., Suyama, K. L., and Kay, J. M. (1989) Enhanced cancer metastasis after monocrotaline-induced lung injury.Toxicol. Appl. Pharmacol. 100, 259–266.PubMedCrossRefGoogle Scholar
  10. 10.
    Weiss, L., Orr, F. W., and Honn, K. V. (1989) Interactions between cancer cells and the microvasculature: a rate-regulator for metastasis.Clin. Exp. Metastasis 7, 127–167.PubMedCrossRefGoogle Scholar
  11. 11.
    Nicolson, G. L. (1982) Metastatic tumour cell attachment and invasion assay utilizing vascular endothelial cell monolayers.J. Histochem. Cytochem. 30, 214–220.PubMedGoogle Scholar
  12. 12.
    Crissman, J. D., Hatfield, J. S., Menter, D. G., Sloane, B., and Honn, K. V. (1988) Morphological study of the interaction of intravascular tumour cells with endothelial cells and subendothelial matrix.Cancer Res. 48, 4065–4072.PubMedGoogle Scholar
  13. 13.
    Fidler, I. J. (1990) Critical factors in the biology of human cancer metastasis: twenty-eighth G. H. A. Clowes Memorial Award lecture.Cancer Res. 50, 6130–6138.PubMedGoogle Scholar
  14. 14.
    Liotta, L. A. and Kohn, E. (1990) Cancer invasion and metastasis.J. Am. Med. Assoc. 23, 1123–1126.CrossRefGoogle Scholar
  15. 15.
    Debruyn, P. P. H. (1991) Passage across the vascular wall by malignant cells in metastasis formation, inMicrocirculation in Cancer Metastasis. (Orr, F. W., Buchanan, M. R., and Weiss, L., eds.), CRC, Boca Raton, FL, pp. 57–66.Google Scholar
  16. 16.
    Frixen, U. H., Behrens, J., Sachs, M., Eberle, G., Voss, B., Warda, A., Lochner, D., and Birchmeier, W. (1991) E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells.J. Cell. Biol. 113, 173–185.PubMedCrossRefGoogle Scholar
  17. 17.
    Navarro, P., Gomez, M., Pizarro, A., Gamallo, C., Quintanilla, M., and Cano, A. (1991) A role for the E-cadherin-mediated cell-cell adhesion moleucle during tumor progression of mouse epidermal carcinogenesis.J. Cell Biol. 115, 517–533.PubMedCrossRefGoogle Scholar
  18. 18.
    Fearon, E. R., Cho, K. R., and Nigro, J. M. (1990) Identification of a chromosome 18q gene that is altered in colorectal cancer.Science 247, 49–56.PubMedCrossRefGoogle Scholar
  19. 19.
    Herlyn, M. and Malkowicz, S. B. (1990) Regulatory pathways in tumour growth and invasion.Lab. Invest. 47, 262–271.Google Scholar
  20. 20.
    Liotta, L. A., Rao, C. N., and Wewer, U. N. (1986) Biochemical interactions of tumour cells with the basement membrane.Ann. Rev. Biochem. 55, 1037–1057.PubMedCrossRefGoogle Scholar
  21. 21.
    Duffy, M. J. (1992) The role of proteolytic enzymes in cancer invasion and metastasis.Clin. Exp. Metastasis 10, 145–155.PubMedCrossRefGoogle Scholar
  22. 22.
    Hellman, K. (1991) Entry of cancer cells into the circulation, inMicrocirculation in Cancer Metastasis. (Orr, F. W., Buchanan, M. R., and Weiss, L., eds.), CRC, Boca Raton, FL, pp. 67–79.Google Scholar
  23. 23.
    Fidler, I. J. and Balch, C. M. (1977) The biology of cancer metastasis and implications for therapy.Curr. Prob. Surg. 24, 129–209.Google Scholar
  24. 24.
    Kramer, R. H., McDonald, K. A., Crowley, E., Ramos, D. M., and Damsky, C. H. (1989) Melanoma cell adhesion to basement membranes mediated by integrin-related complexes.Cancer Res. 49, 393–402.PubMedGoogle Scholar
  25. 25.
    Kramer, R. H., Enenstein, J., Ramos, D. M., Vu, M. P., and Cheng, Y.-E. (1991) The role of integrin receptors in tumour cell adhesion to the microvasculature, inMicrocirculation in Cancer Metastasis. (Orr, F. W., Buchanan, M. R., and Weiss, L., eds.), CRC, Boca Raton, FL, pp. 145–169.Google Scholar
  26. 26.
    Terranova, V. P. and Maslow, D. E. (1991) Interactions of tumour cells with basement membranes, inMicrocirculation in Cancer Metastasis. (Orr, F. W., Buchanan, M. R., and Weiss, L., eds.), CRC, Boca Raton, FL., pp. 23–45.Google Scholar
  27. 27.
    Liotta, L. A., Wewer, U., Tao, N. C., Schiffman, E., Stracke, M., Guirguis, R., Thorgersson, U., Muschel, R., and Sobel, M. (1987) Biochemical mechanisms of tumor invasion and metastasis.Anti-Cancer Drug Des. 2, 195–202.Google Scholar
  28. 28.
    Nakajima, M., Welsh, D. R., Belloni, P. N., and Nicolson, G. L. (1987) Degradation of basement membrane type IV collagen and lung subendothelial matrix by rat mammary adenocarcinoma cell clones of differing metastatic potentials.Cancer Res. 47, 4869–4876.PubMedGoogle Scholar
  29. 29.
    Nakajima, M., Morikawa, K., Fabra, A., Bucana, C. D., and Fidler, I. J. (1990) Influence of organ environment on extracellular matrix degradative activity and metastasis of human colon carcinoma cells.J. Natl. Cancer Inst. 82, 1890–1896.PubMedCrossRefGoogle Scholar
  30. 30.
    Reich, R., Thompson, E. W., Iwamoto, Y., Martin, G. R., Deason, J. R., Fuller, G. C., and Miskin, R. (1988) Effects of inhibitors of plasminogen activator, serine proteinases and collagenase IV on the invasion of basement membranes by metastatic cells.Cancer Res. 48, 3307–3312.PubMedGoogle Scholar
  31. 31.
    Koivunen, E., Ristimaki, A., Itkonen, O., Osman, S., Vuento, M., and Stenman, U.-H. (1991) Tumour-associated trypsin participates in cancer cell-mediated degradation of extracellular matrix.Cancer Res. 51, 2107–2112.PubMedGoogle Scholar
  32. 32.
    Qian, F., Bajkowski, A. S., Steiner, D. F., Chan, S. J., and Frankfater, A. (1989) Expression of five cathepsins in murine melanomas of varying metastatic potential and normal tissues.Cancer Res. 49, 4870–4875.PubMedGoogle Scholar
  33. 33.
    Yagel, S., Warner, A. H., Nellans, H. N., Lala, P. K., Waghorne, C., and Denhardt, D. T. (1989) Suppression by Cathepsin L inhibitors of the invasion of amnion membranes by murine cancer cells.Cancer Res. 49, 3553–3557.PubMedGoogle Scholar
  34. 34.
    Rozhim, J., Gomez, A. P., Ziegler, G. H., Nelson, K. K., Chang, Y. S., Fong, D., Onoda, J. M., Honn, K. V., and Sloane, B. F. (1990) Cathepsin B to cysteine proteinase inhibitor balance in metastatic cell subpopulations isolated from murine tumors.Cancer Res. 50, 6278–6284.Google Scholar
  35. 35.
    Edwards, D. R., Murphy, G., Reynolds, J. J., Whitham, S. E., Docherty, A. J. P., Angel, P., and Heath, J. K. (1987) Transforming growth factor β modulates the expression of collagenase and metalloproteinase inhibitor.EMBO J. 6, 1899–1904.PubMedGoogle Scholar
  36. 36.
    Bernhard, E. J., Muschel, R. J., and Hughes, E. N. (1990) Mr 92,000 gelatinase release correlates with the metastatic phenotype in transformed rat embryo cells.Cancer Res. 50, 3872–3877.PubMedGoogle Scholar
  37. 37.
    Templeton, N. S., Brown, P. D., Levy, A. T., Margulies, I. M. K., Liotta, L. A., and Stetler-Stevenson, W. G. (1990) Cloning and characterization of human tumour cell interstitial collagenase.Cancer Res. 50, 5431–5437.PubMedGoogle Scholar
  38. 38.
    Bonfil, D. R., Neduba, P. A., Gomez, D. E., Farfas, E., Kazariwsju, A., Gritti, M. F. L., Meiss, R. P., and Bustuoabad, O. D. (1992) Expression of gelatinase/type IV collagenase in tumour necrosis correlates with cell detachment and tumour invasion.Clin. Exp. Metastasis 10, 211–220.PubMedCrossRefGoogle Scholar
  39. 39.
    Mignatti, P., Robbins, E., and Rifkin, D. B. (1986) Tumour invasion through the human amniotic membrane: requirement for a proteinase cascade.Cell 47, 487–498.PubMedCrossRefGoogle Scholar
  40. 40.
    Hasui, Y., Suzumiya, J., Marutsuka, K., Sumiyoshi, A., Hashida, S., and Ishikawa, I. (1989) Comparative study of plasminogen activators in cancers and normal mucosae of human urinary bladder.Cancer Res. 49, 1067–1070.PubMedGoogle Scholar
  41. 41.
    Heidtmann, H.-H., Hofmann, M., Jacob, E., Erbil, C., Havemann, K., and Schwartz-Albiez, R. (1989) Synthesis and secretion of plasminogen activators and plasminogen activator inhibitors in cell lines of different groups of human lung tumors.Cancer Res. 49, 6960–6965.PubMedGoogle Scholar
  42. 42.
    Quax, P. H. A., van Leeuwen, R. T. J., Verspaget, H. W., and Verheijen, J. H. (1990) Protein and messenger RNA levels of plasminogen activators and inhibitors analyzed in 22 human tumour cell lines.Cancer Res. 50, 1488–1494.PubMedGoogle Scholar
  43. 43.
    Mawatari, M., Okamura, K., Matsuda, T., Hamanaka, R., Mizoguchi, H., Higashio, K., Kohno, K., and Kuwano, M. (1991) Tumor necrosis factor and epidermal growth factor modulate migration of human microvascular endothelial cells and production of tissue-type plasminogen activator and its inhibitor.Exp. Cell Res. 192, 574–580.PubMedCrossRefGoogle Scholar
  44. 44.
    Meissauer, A., Kramer, M. D., Hofmann, M., Erkell, L. J., Jacob, E., Schirrmacher, V., and Brunner, G. (1991) Urokinase-type and tissue-type plasminogen activators are essential forin vitro invasion of human melanoma cells.Exp. Cell Res. 192, 453–459.PubMedCrossRefGoogle Scholar
  45. 45.
    Quax, P. H. A., van Muijen, G. N. P., Weening-Verhoeff, E. J. D., Lund, L. R., Dano, K., and Ruiter, D. J. (1991) Metastatic behaviour of human melanoma cell lines in nude mice correlates with urokinase-type plasminogen activator, its type-1 inhibitor, and urokinase-mediated matrix degradation.J. Cell Biol. 115, 191–199.PubMedCrossRefGoogle Scholar
  46. 46.
    Dano, K., Andreasen, P. A., Grondahl-Hansen, J., Kristensen, P., Nielson, L. S., and Skrivner, L. (1985) Plasminogen activators, tissue degradation and cancer.Adv. Canc. Res. 44, 139–266.Google Scholar
  47. 47.
    Saksela, O. and Rifkin, D. B. (1988) Cell-associated plasminogen activation: regulation and physiological functions.Ann. Rev. Cell Biol. 4, 93–126.PubMedGoogle Scholar
  48. 48.
    Werb, Z., Hembry, R. M., Murphy, G., and Aggeler, J. (1986) Commitment to expression of the metalloproteinases, collagenases and stromelysin.J. Cell Biol. 102, 697–702.PubMedCrossRefGoogle Scholar
  49. 49.
    Boyd, D., Ziober, B., Chakrabarty, S., and Brattain, M. (1989) Examination of urokinase protein/transcript levels and their relationship with laminin degradation in cultured colon carcinoma.Cancer Res. 49, 816–820.PubMedGoogle Scholar
  50. 50.
    Schlechte, W., Murano, G., and Boyd, D. (1989) Examination of the role of the urokinase receptor in human colon cancer mediated laminin degradation.Cancer Res. 49, 6064–6069.PubMedGoogle Scholar
  51. 51.
    Folkman, J. (1971) Tumour angiogenesis: therapeutic implications.N. Engl. J. Med. 285, 1182–1186.PubMedCrossRefGoogle Scholar
  52. 52.
    Liotta, L. A., Steeg, P. S., and Stetler-Stevenson, W. G. (1991) Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation.Cell 64, 327–336.PubMedCrossRefGoogle Scholar
  53. 53.
    Folkman, J. and Klagsbrun, M. (1987) Angiogenic factors.Science 235, 442–447.PubMedCrossRefGoogle Scholar
  54. 54.
    Sutherland, R. M. (1988) Cell and environmental interaction in tumor microregions. The multicell spheroid model.Science 240, 177–181.PubMedCrossRefGoogle Scholar
  55. 55.
    Pepper, M. S., Spray, D. C., Chanson, M., Montesano, R., Orci, L., and Meda, P. (1989) Junctional communication is induced in migrating capillary endothelial cells.J. Cell Biol. 109, 3027–3038.PubMedCrossRefGoogle Scholar
  56. 56.
    Dickson, R. B. and Lippman, M. E. (1992) Molecular determinant of growth, angiogenesis, and metastasis in breast cancer.Sem. Oncol. 19, 286–298.Google Scholar
  57. 57.
    Weiss, L. (1988) Biomechanical destruction of cancer cells in the heart: a rate regulator for hematogenous metastasis.Invasion Metastasis 8, 228–237.PubMedGoogle Scholar
  58. 58.
    Weiss, L. (1991) The biomechanics of cancer cell traffic, arrest and intravascular destruction, inMicrocirculation in Cancer Metastasis. (Orr, F. W., Buchanan, M. R., and Weiss, L., eds.), CRC, Boca Raton, FL, pp. 131–145.Google Scholar
  59. 59.
    Weiss, L. and Clement, K. (1969) Studies on cell deformability: some rheological considerations.Exp. Cell Res. 58, 379–387.PubMedCrossRefGoogle Scholar
  60. 60.
    Weiss, L., Dimitrov, D. S., and Angelova, M. (1985) The hemodynamic destruction of intravascular cancer cells in relation to myocardial metastasis.Proc. Natl. Acad. Sci. USA 82, 5737–5741.PubMedCrossRefGoogle Scholar
  61. 61.
    Sato, H. and Suzuki, M. (1976) Deformability and viability of tumor cells by transcapillary passage with reference to organ affinity in metastasis, inFundamental Aspects of Metastasis. (Weiss, L., ed.), North-Holland, Amsterdam, pp. 311–317.Google Scholar
  62. 62.
    Chambers, A. F., Schmidt, E. E., MacDonald, I. C., Morris, V. L., and Groom, A. C. (1992) Early steps in hematogenous metastasis of B16F1 melanoma cells in chick embryos studied by high-resolution intravital videomicroscopy.J. Natl. Cancer Inst. 84, 797–803.PubMedCrossRefGoogle Scholar
  63. 63.
    Gorelik, E., Fogel, M., Feldman, M., and Segal, S. (1979) Differences in resistance of metastatic tumour cells and cells from local tumour growth to cytotoxicity of natural killer cells.J. Natl. Inst. 63, 1397–1404.Google Scholar
  64. 64.
    Gorelik, E., Feldman, M., and Segal, S. (1982) Selection of 3LL tumour sublines resistant to natural effector cells concomitantly selected for increased metastatic potency.Cancer Immunol. Immunother. 12, 105–109.CrossRefGoogle Scholar
  65. 65.
    Bosslet, K. and Schirrmacher, V. (1981) Escape of metastasizing clonal tumour cell variants from tumour-specific cytolytic T lymphocytes.J. Exp. Med. 154, 557–562.PubMedCrossRefGoogle Scholar
  66. 66.
    Roder, J. C., Helfand, S. L., Werkmeister, J., McGarry, R., Beaumont, T. J., and Duwe, A. (1982) Oxygen intermediates are triggered early in the cytolytic pathway of human NK cells.Nature 298, 569–572.PubMedCrossRefGoogle Scholar
  67. 67.
    Reading, C. L., Kraemer, P. M., Miner, K. M., and Nicolson, G. L. (1983)In vivo andin vitro properties of malignant variants of RAW117 metastatic murine lymphoma/lymphosarcoma.Clin. Exp. Metastasis 1, 135–151.PubMedCrossRefGoogle Scholar
  68. 68.
    Abrams, S. I. and Brahmi, Z. (1984) Compared mechanisms of tumour cytolysis by human natural killer cells and activated polymorphonuclear leukocytes.J. Immunol. 132, 3192–3196.PubMedGoogle Scholar
  69. 69.
    Schirrmacher, V. (1985) Experimental approaches, theoretical concepts and impacts for treatment strategies.Adv. Cancer Res. 43, 1–32.PubMedGoogle Scholar
  70. 70.
    Lichtenstein, A. (1987) Stimulation of the respiritory burst of murine peritoneal inflammatory neutrophils by conjugation with tumor cells.Cancer Res. 47, 2211–2217.PubMedGoogle Scholar
  71. 71.
    Riser, B. L., Mitra, R., Perry, D., Dixit, V., and Varani, J. (1989) Monocyte killing of human squamous epithelial cells: role for thrombospondin.Cancer Res. 49, 6123–6129.PubMedGoogle Scholar
  72. 72.
    Schwartz, R. F., Vujanovic, N. L., and Hiserodt, J. C. (1989) Enhanced antimetastatic activity of lymphokine-activated killer cells purified and expanded by their adherence to plastic.Cancer Res. 49, 1441–1446.Google Scholar
  73. 73.
    Iwasaki, K., Kikuchi, H., Miyatake, S.-I., Aoki, T., Yamasaki, T., and Oda, Y. (1990) Infiltrative and cytolytic activities of lymphokine-activated killer cells against a human glioma spheroid model.Cancer Res. 50, 2429–2436.PubMedGoogle Scholar
  74. 74.
    Glaves, D. (1983) Correlation between circulating cancer cells and incidence of metastases.Br. J. Cancer 48, 665–673.PubMedGoogle Scholar
  75. 75.
    Glaves, D. (1986) Intravascular death of disseminate cancer cells mediated by superoxide anion.Invasion Metastasis 6, 101–112.PubMedGoogle Scholar
  76. 76.
    Crissman, J. D., Hatfield, J., Schaldenbrand, J., Sloane, B. F., and Honn, K. V. (1985) Arrest and extravasation of B16 a melanotic melanoma in murine lungs. A light and electron microscopy study.Lab Invest. 53, 470–478.PubMedGoogle Scholar
  77. 77.
    Miner, K. M. and Nicolson, G. L. (1983) Differences in the sensitivities of murine metastatic lymphoma/lymphosarcoma variants to macrophage-mediated cytolysis and/or cytostasis.Cancer Res. 43, 2063–2067.PubMedGoogle Scholar
  78. 78.
    Glaves, D. (1991) Interactions between circulating cancer cells and host leukocytes, inMicrocirculation in Cancer Metastasis. (Orr, F.W., Buchanan, M.R., and Weiss, L., eds.), CRC, Boca Raton, FL, pp. 79–93.Google Scholar
  79. 79.
    Glaves, D. (1980) Metastasis: reticuloendothelial system and organ retention of disseminated malignant cells.Int. J. Cancer 26, 115.PubMedCrossRefGoogle Scholar
  80. 80.
    Proctor, J.W., Yamamura Y., Diizio, N.R., Mansell, P.W.A., and Harnaha, J. (1981) Development of a bioassay for the anti-tumor activity of biological response modulator of the reticuloendothelial stimulant class—correlation with the outgrowth of lung tumors.Cancer Immunol.10, 197–202.Google Scholar
  81. 81.
    Conley, F.K. (1982) Effect of immunomodulation on the fate of tumor cells in the central nervous system and systemic organs of mice.J. Natl. Cancer Inst. 60, 465–473.Google Scholar
  82. 82.
    Orr, F.W. (1991) The influence of endothelial injury and inflammation processed on metastasis, inMicrocirculation in Cancer Metastasis (Orr, F.W., Buchanan, M.R., and Weiss, L., eds.), CRC, Boca Raton, FL, pp. 239–255.Google Scholar
  83. 83.
    Movat, H.Z., Cybulski, M.I., Colditz, I.G., Chan, M.K.W., and Dinarello, C.A. (1987) Acute inflammation in gram-negative infection: endotoxin, interleukin 1, tumour necrosis factor, and neutrophils.Fed. Proc.,46, 97–104.PubMedGoogle Scholar
  84. 84.
    Pober, J.S. and Cotran, R.S. (1990) The role of endothelial cells in inflammation.Transplantation 50, 537–544.PubMedCrossRefGoogle Scholar
  85. 85.
    Montavani, A., Bussolino, F., and Dejana, E. (1992) Cytokine regulation of endothelial cell function.FASEB J. 6, 2591–2599.Google Scholar
  86. 86.
    Auerback, R. (1988) Patterns of tumour metashsis: organ selectivity in the spread of cancer cells.Lab. Invest. 58, 361–364.Google Scholar
  87. 87a.
    Nicolson, G.L. (1988) Organ specificity of tumour metasis: role of preferential adhesion, invasion and growth of malignant cells at specific secondary sites.Cancer Metastasis Rev. 7, 143–188.PubMedCrossRefGoogle Scholar
  88. 87b.
    Nicolson, G.L. (1988) Cancer metastasis: tumour cell and host organ properties important in metastasis to specific secondary sites.Biochim. Biophys. Acta. 948, 175–224.PubMedGoogle Scholar
  89. 88.
    Barbara-Guillem, E., Alonso-Varone, A., and Vidal-Vanaclocha, F. (1989) Selective implantation and growth in rats and mice of experimental liver metastasis in acinar zone one.Cancer Res. 49, 4003–4010.Google Scholar
  90. 89.
    Vidal-Vanaclocha, F., Alonso-Varona, A., Ayala, R., Boyano, M.-D., and Barbara-Guillem, E. (1990) Coincident implantation, growth and interaction sites within the liver of cancer and reactive hematopoietic cells.Int. J. Cancer 46, 267–271.PubMedCrossRefGoogle Scholar
  91. 90.
    Updyke, T.V. and Nicolson, G.L. (1986) Malignant melanoma cell lines selectedin vitro for increased homotypic adhesion properties have increased experimental metastatic potential.Clin. Exp. Metastasis 4, 273–284.PubMedCrossRefGoogle Scholar
  92. 91.
    Maslow, D.E. (1989) Tabulation of results on the heterogeneity of cellular characteristics among cells from B16 mouse melanoma cell lines with different colonization potentials.Invasion Metastasis 9, 182–191.PubMedGoogle Scholar
  93. 92.
    Gasic, G. (1984) Role of plasma platelets and endothelial cells in tumour metastasis.Cancer Metastastis Rev. 3, 99–114.CrossRefGoogle Scholar
  94. 93.
    Fidler, I.J. (1975) Biological behavior of malignant melanoma cells correlated to their survivalin vivo, Cancer Res. 35, 218–224.PubMedGoogle Scholar
  95. 94.
    Starkey, J.R., Liggit, H.D., Jones, W., and Hosick, H.L. (1984) Influence of migratory blood cells on the attachment of tumour cells to vascular endothelium.Int. J. Cancer 34, 535–543.PubMedCrossRefGoogle Scholar
  96. 95.
    Mehta, P. (1984) Potential role of platelets in the pathogenesis of tumor metastasis.Blood 63, 55–63.PubMedGoogle Scholar
  97. 96.
    Gasic, G.J., Gasic, T.B., and Jimenes, S.A. (1977) Platelet aggregating material in mouse tumour cells. Removal and regeneration.Lab. Invest. 36, 413–419.PubMedGoogle Scholar
  98. 97.
    Pauli, B.U., Augustin Voss, H.G., el Sabban, M.E., Johnson, R.C., and Hammer, D.A. (1990) Organ-preferences of metastasis. The role of endothelial cell adhesion molecules.Cancer Metastasis Rev. 9, 175–189.PubMedCrossRefGoogle Scholar
  99. 98.
    Pauli, B.U. and Lee, C.-L. (1988) Organ preference of metastasis. The role of organ-specifically modulated endothelial cells.Lab. Invest. 58, 379–387.PubMedGoogle Scholar
  100. 99.
    Zetter, B.R. (1990) The cellular basis of site-specific tumour metastasis.N. Eng. J. Med. 322, 605–612.CrossRefGoogle Scholar
  101. 100.
    Einhorn, L.H., Burgee, M.A., Vallejos, C., Bodey, G.P., Gutterman, J., Mavligit, G., Hers, E.M., Luce, J.K., Frei, E., Freireich, E.J., and Gottlieb, J.A. (1974) Prognostic correlations and response to treatment in advanced metastatic malignant melanoma.Cancer Res. 34, 1995–2004.PubMedGoogle Scholar
  102. 101.
    Stehlin, J.S., Hills, W.J., and Rufino, C. (1967) Disseminated melanoma: biologic behaviour and treatment.Arch. Surg. 94, 495–501.PubMedGoogle Scholar
  103. 102.
    Romsdahl, M.M., Sear, M.E., and Eckles, N.E. (1970) Post-treatment evaluation of breast cancer, inBreast Cancer—Early and Late. University of Texas, Medical Publishers, Chicago, pp. 291–299.Google Scholar
  104. 103.
    Bonadonna, G., Brusamolino, E., Valagussa, P., Rose, A., Brugnatelli, L., Brambilla, C., De Lena, M., Tanci, G., Bayetta, E., Musumeci, R., and Verones, U. (1976) Combination chemotherapy as an adjuvant treatment in operable breast cancer.N. Engl. J. Med. 294, 405–410.PubMedCrossRefGoogle Scholar
  105. 104.
    Prout, G.R., Jr. (1973) Prostate gland, inCancer Medicine, (Holland, J.F. and Frei, E., eds.), Lea and Ferbiger, Philadelphia, pp. 1680–1694.Google Scholar
  106. 105.
    Revel, P.A. (1986)Pathology of Bone, Springer-Verlag, Berlin, p. 302.Google Scholar
  107. 106.
    Lukes, R.J. and Collin, R.D. (1977) The Lukes-Collins classification system and its significance.Cancer Treat. Rep. 61, 1–9.Google Scholar
  108. 107.
    Kamenov, B., Kieran, M.W., Barrington-Leigh, J., and Longenecker, B.M. (1984) Homing receptors as functional markers for classification, prognosis and therapy of leukemias and lymphomas.Proc. Soc. Exp. Biol. Med. 177, 211–219.PubMedGoogle Scholar
  109. 108.
    Nicolson, G.L. and Poste, G. (1983) Tumor implantation and invasion at metastatic sites.Int. Rev. Exp. Pathol. 25, 77–181.PubMedGoogle Scholar
  110. 109.
    Fidler, I.J. (1973) The relationship of embolic homogeneity, number, size and viability to the incidence of experimental metastasis.Eur. J. Cancer 9, 223–227.PubMedGoogle Scholar
  111. 110.
    Brunson, K.W., Beattie, G., and Nicolson, G.L. (1978) Selection and altered properties of brain-colonising metastatic melanoma.Nature 272, 543–546.PubMedCrossRefGoogle Scholar
  112. 111.
    Miner, K.M., Kawaguchi, T., Uba, G.W., and Nicolson, G.L. (1982) Clonal drift of cell surface, melanogenic and experimental metastatic properties ofin vivo-selected, brain meninges-colonizing murine B16 melanoma.Cancer Res. 42, 4631–4638.PubMedGoogle Scholar
  113. 112.
    Brunson, K.W. and Nicolson, G.L. (1979) Selection of malignant melanoma variant cell lines for ovary colonization.J. Supramol. Struct. 11, 517–528.PubMedCrossRefGoogle Scholar
  114. 113.
    Tao, T.-W., Matter, A., Vogel, K., and Burge, M.M. (1979) Liver colonizing melanoma cells selected from B16 melanoma.Int. J. Cancer 23, 854–857.PubMedCrossRefGoogle Scholar
  115. 114.
    Nicolson, G.L., Mascali, J.J., and McGuire, E.J. (1982) Metastatic RAW117 lymphosarcoma as a model for malignant-normal cell interactions. Possible roles for cell surface antigens in determining the quantity and location of secondary tumors.Oncodev. Biol. Med. 4, 149–159.PubMedGoogle Scholar
  116. 115.
    Barnett, S.C. and Eccles, S.A. (1984) Studies of mammary carcinoma metastasis in a mouse model system. I. Derivation and characterization of cells with different metastatic properties during tumour progressionin vivo.Clin. Exp. Metastasis 2, 15–36.PubMedCrossRefGoogle Scholar
  117. 116.
    Pal, K., Kopper, L., and Lapis, K. (1983) Increase metastatic capacity of lewis lung carcinoma by anin vivo selection procedure.Invasion Metastasis 3, 174–182.PubMedGoogle Scholar
  118. 117.
    Brodt, P. (1986) Characterization of two highly metastatic variants of Lewis lung carcinoma with different organ specificities.Cancer Res. 46, 2442–2448.PubMedGoogle Scholar
  119. 118.
    Dexter, D.L., Kowalski, H.M., Blazer, B.A., Fligiel, Z., Vogel, R., and Heppner, G.H. (1978) Heterogeneity of tumor cells from a single mouse mammary tumor.Cancer Res. 38, 3174–3181.PubMedGoogle Scholar
  120. 119.
    Kahan, B. (1987) Experimental metastasis of mouse embryonal carcinoma cell lines to specific locations.Cancer Res. 47, 6315–6323.PubMedGoogle Scholar
  121. 120.
    Shearman, P.J. and Longenecker, B.M. (1981) Clonal variation and functional correlation of organ-specific metastasis and an organ-specific metastasis associated antigen.Int. J. Cancer 27, 387–395.PubMedCrossRefGoogle Scholar
  122. 121.
    Neri, A., Welsh, D., Kawaguchi, T., and Nicolson, G.L. (1982) Development and biologic properties of malignant cell sublines and clones of spontaneously metastasizing rat mammary adenocarcinoma.J. Natl. Cancer Inst. 68, 507–517.PubMedGoogle Scholar
  123. 122.
    Welsh, D.R., Neri, A., and Nicolson, G.L. (1983) Comparison of “spontaneous” and “experimental” metastasis using rat 13762 mammary adenocarcinoma metastatic cell clones.Invasion Metastasis 3, 65–80.Google Scholar
  124. 123.
    Poupon, M.-F. (1986) The metastatic function of cancer cells as revealed by a rat sarcoma model.Cancer Rev. 5, 50–82.Google Scholar
  125. 124.
    Kozlowski, J.M., Fidler, I.J., Campbell, D., Xu, Z.-L., Kaighn, E., and Hart, I.R. (1984) Metastatic behavior of human tumour cell lines grown in the nude mouse.Cancer Res. 44, 3522–3529.PubMedGoogle Scholar
  126. 125.
    Fidler, I.J. (1986) Rationale and methods for the use of nude mice to study the biology and therapy of human cancer metastasis.Cancer Metastasis Rev. 5, 29–49.PubMedCrossRefGoogle Scholar
  127. 126.
    Kozlowski, J.M., Hart, I.R., Fidler, I.J., and Hann, N. (1984) A human melanoma line heterogeneous with respect to metastatic capacity in athymic nude mice.J. Natl. Cancer Inst. 72, 913–917.PubMedGoogle Scholar
  128. 127.
    Haq, M., Gultzman, D., Tromblay, G., and Brodt, P. (1992) Rat prostate adenocarcinoma cells disseminate to bone and preferentially to bone-marrow-derived endothelial cells.Cancer Res. 52, 4613–4619.PubMedGoogle Scholar
  129. 128.
    Naito, S., von Eschenbach, A. C., Giavazzi, R., and Fidler, I. J. (1986) Growth and metastasis of tumour cells isolated from a human renal cell carcinoma implanted into different organs of nude mice.Cancer Res. 46, 4109–4115.PubMedGoogle Scholar
  130. 129.
    Naito, S., von Eschenbach, A. C., and Fidler, I. J. (1987) Different growth pattern and biologic behaviour of human renal cell carcinoma implanted into different organs of nude mice.J. Natl. Cancer Inst. 78, 377–385.PubMedGoogle Scholar
  131. 130.
    Giavazzi, R., Jessup, J. M., Campbell, D. E., Walker, S. M., and Fidler, I. J. (1986) Experimental nude mouse model of human colorectal cancer liver metastases.J. Natl. Cancer Inst. 77, 1303–1308.PubMedGoogle Scholar
  132. 131.
    Giavazzi, R., Campbell, D. E., Jessup, J. M., Cleary, K., and Fidler, I. J. (1986) Metastatic behavior of tumour cells isolated from primary and metastatic human colorectal carcinomas implanted into different sites in nude mice.Cancer Res. 46, 1928–1933.PubMedGoogle Scholar
  133. 132.
    Ishikawa, M., Dennis, J. W., Man, S., and Kerbel, R. S. (1988) Isolation and characterization of spontaneous wheat-germ agglutinin-resistant human melanoma mutants displaying remarkably different metastatic profiles in nude mice.Cancer Res. 48, 665–670.PubMedGoogle Scholar
  134. 133.
    Nicolson, G. L. and Winkelhake, J. L. (1975) Organ specificity of blood-borne tumour metastasis determined by cell adhesion?Nature 255, 230–233.PubMedCrossRefGoogle Scholar
  135. 134.
    Netland, P. A. and Zetter, B. R. (1984) Organ-specific adhesion of metastatic tumor cellsin vitro.Science 224, 1113–1115.PubMedCrossRefGoogle Scholar
  136. 135.
    Bargatze, R. F., Wu, N. W., Weissman, I. L., and Butcher, E. C. (1987) High endothelial venule binding as a predictor of the dissemination of passaged murine lymphomas.J. Exp. Med. 166, 1125–1131.PubMedCrossRefGoogle Scholar
  137. 136.
    Netland, P. A. and Zetter, B. R. (1985) Metastatic potential of B16 melanoma cells afterin vitro selection for organ-specific adherence.J. Cell. Biol. 101, 720–724.PubMedCrossRefGoogle Scholar
  138. 137.
    Gumbkowski, F., Kaminski, G., Kaminski, M., Morrissey, L. W., and Auerbach, R. (1987) Heterogeneity of mouse vascular endothelium.In vitro studies of lymphatic, large blood vessel and microvascular endothelial cells.Blood Vessels 24, 11–23.Google Scholar
  139. 138.
    Belloni, P. N. and Nicolson, G. L. (1988) Differential expression of cell surface glycoproteins on various organ-derived microvascular endothelia and endothelial cell cultures.J. Cellular Physiol. 136, 398–410.CrossRefGoogle Scholar
  140. 139.
    Augustin-Voss, H. G., Johnson, R. C., and Pauli, B. U. (1991) Modulation of endothelial cell surface glycoconjugate expression by organ-derived bionmatrices.Exp. Cell. Res. 192, 346–351.PubMedCrossRefGoogle Scholar
  141. 140.
    Alby, L. and Auerbach, R. (1984) Differential adhesion of tumour cells to capillary endothelial cellsin vitro.Proc. Natl. Acad. Sci. USA 81, 5739–5743.PubMedCrossRefGoogle Scholar
  142. 141.
    Auerbach, R., Lu, W. C., Pardon, E., Gumkowski, F., Kaminska, G., and Kaminski, M. (1987) Specificity of adhesion between murine tumour cells and capillary endothelium: anin vitro correlate of preferential metastasisin vivo.Cancer Res. 47, 1492–1497.PubMedGoogle Scholar
  143. 142.
    Lichtner, R. B., Bellonii, P. N., and Nicolson, G. L. (1989) Differential adhesion of metastatic rat mammary carcinoma cells to organ-derived microvessel endothelial cells and subendothelial matrix.Exp. Cell Biol. 57, 146–152.PubMedGoogle Scholar
  144. 143.
    Johnson, R. C., Augustin-Voss, H. G., Zhu, D., and Pauli, B. U. (1991) Endothelial cell membrane vesicles in the study of organ preference of metastasis.Cancer Res. 51, 394–399.PubMedGoogle Scholar
  145. 144.
    Zhu, D., Cheng, C. F., and Pauli, B. U. (1991) Mediation of lung metastasis of murine melanomas by a lung-specific endothelial cell adhesion molecule.Proc. Natl. Acad. Sci. USA 88, 9568–9572.PubMedCrossRefGoogle Scholar
  146. 145.
    Zhu, D., Cheng, C. F., and Pauli, B. U. (1992) Blocking of lung endothelial cell adhesion molecule-1 (Lu-ECAM-1) inhibits murine melanomal lung metastasis.J. Clin. Invest. 89, 1718–1724.PubMedGoogle Scholar
  147. 146.
    Roos, E. and Dingemans, K. P. (1979) Mechanism of metastasis.Biochim. Biophys. Acta. 560, 135–166.PubMedGoogle Scholar
  148. 147.
    Dingemans, K. P., van den Berg, M. A., and Weerman, M. A. (1990) Invasion of lung and liver tissue by different types of tumour cells inMetastasis: Clinical and Experimental Aspects. (Hellmann, K., Hilgard, P., and Eccles, S., eds.), Martinus Nijhoff Publishers, The Hague, pp. 194–198.Google Scholar
  149. 148.
    Crissman, J. D., Hatfield, J. S., Menter, D. G., Sloane, B., and Honn, K. V. (1991) Morphological study of the interaction of intravascular tumour cells with endothelial cells and subendothelial matrix.Cancer Res. 48, 4065–4072.Google Scholar
  150. 149.
    Kramer, R. H., Gonzalez, R., and Nicolson, G. L. (1980) Metastatic tumour cells adhere preferentially to the extracellular matrix underlying vascular endothelial cells.Int. J. Cancer 26, 639–645.PubMedCrossRefGoogle Scholar
  151. 150.
    Kramer, R. H. and Nicolson, G. L. (1979) Interactions of tumour cells with vascular endothelial cell monolayers: a model for metastatic invasion.Proc. Natl. Acad. Sci. USA 76, 5704–5708.PubMedCrossRefGoogle Scholar
  152. 151.
    Kramer, R. H., Enenstein, J., Ramos, D. M., Vu, M. P., and Cheng, Y.-E. (1991) The role of integrin receptors in tumour cell adhesion to the microvasculture, inMicrocirculation in Cancer Metastasis. (Orr, F. W., Buchanan, M. R. and Weiss, L., eds.), CRC, Boca Raton, FL, pp. 145–169.Google Scholar
  153. 152.
    Shaughnessy, S. G., Buchanan, M. R., Turple, S., Richardson, M., and Orr, F. W. (1989) Walker carcinosarcoma cells damage endothelial cells by the generation of reactive oxygen species.Am. J. Pathol. 134, 787–796.PubMedGoogle Scholar
  154. 153.
    Szatrowski, T. P. and Nathan, C. F. (1991) Production of large amounts of hydrogen peroxide by human tumour cells.Cancer Res. 51, 794–798.PubMedGoogle Scholar
  155. 154.
    Offner, F. A., Wirtz, H. C., Schiefer, J., Bigalke, I., Klosterhalfer, B., Bittinger, F., Mittermayer, C., and Kirkpatrick, C. J. (1992) Interaction of human malignant melanoma (ST-ML-12) tumour spheroids with endothelial cell monolayers. Damage to endothelium by oxygen-derived, free radicals.Am. J. Pathol. 141, 601–610.PubMedGoogle Scholar
  156. 155.
    Shaughnessy, S. G., Lafrenie, R. M., Buchanan, M. R., Podor, T. J., and Orr, F. W. (1991) Endothelial cell damage by Walker carcinosarcoma cells is dependent on vitronectin receptor-mediated adhesion.Am. J. Pathol. 138, 1535–1543.PubMedGoogle Scholar
  157. 156.
    Liotta, L. A., Abe, S., Robey, P., and Martin, G. (1979) Preferential digestion of basement membrane collagen by an enzyme derived from a metastatic murine tumour.Proc. Natl. Acad. Sci. USA 76, 2268–2272.PubMedCrossRefGoogle Scholar
  158. 157.
    Liotta, L. A., Tryggvason, K., Garbisa, S., Robey, P. G., and Abe, S. (1981) Partial purification and characterization of a neutral protease which cleaves type IV collagen.Biochem. 20, 100–104.CrossRefGoogle Scholar
  159. 158.
    Korczak, B., Kerbel, R. S., and Dennis, J. W. (1991) Autocrine and paracrine regulation of tissue inhibitor of metalloproteinases, transin, and urokinase gene expression in metastatic and nonmetastatic mammary carcinoma cells.Cell Growth Differ. 2, 335–341.PubMedGoogle Scholar
  160. 159.
    Ponten, J. and Saksela, E. (1967) Two establishedin vitro cell lines from human mesenchymal tumours?Int. J. Cancer 2, 434–447.PubMedCrossRefGoogle Scholar
  161. 160.
    Murphy, G., Ward, R., Hembry, R. M., Reynolds, J. J., Kuhn, K., and Tryggvasom, K. (1989) Characterization of gelatinase from pig polymorphonuclear leukocytes. A metalloproteinase resembling tumour type IV collagenase.Biochem. J. 258, 463–472.PubMedGoogle Scholar
  162. 161.
    Troll, W., Wiesner, R., and Frenkel, K. (1987) Anticarcinogenic action of protease inhibitors.Adv. Cancer Res. 49, 265–283.PubMedGoogle Scholar
  163. 162.
    Missirilis, E., Whaley, M., Lhotak, S., and Orr, F. W. (1992) Endothelial injury causes degradation of adjacent basement membranes and promotes their invasion by A549 carcinoma cells.Invasion Metastasis 12, 35–46.Google Scholar
  164. 163.
    Latner, A. L., Longstaff, E., and Pradhan, K. (1973) Inhibition of malignant cell invasionin vitro by a protease inhibitor.Br. J. Cancer 27, 460–464.PubMedGoogle Scholar
  165. 164.
    Thompson, A. W., Pugh-Humphreys, G. P., Horne, C. H. W., and Tweedie, D. J. (1977) Aprotinin and growth of walker 256 carcinosarcoma of the rat.Br. J. Cancer 35, 454–460.Google Scholar
  166. 165.
    Thorgeirsson, U. P., Liotta, L. A., Kalebic, T., Margulies, I. M. P., Thomas, P., Rios-Candelore, M., and Russo, R. G. (1982) Effects of natural protease inhibitors and a chemoattractant on tumour cell invasion.J. Natl. Cancer Inst. 69, 1049–1054.PubMedGoogle Scholar
  167. 166.
    Ponton, A., Coulombe, B., and Skup, D. (1991) Decreased expression of tissue inhibitor of metalloproteinases in metastatic tumour cells leading to increased levels of collagenase activity.Cancer Res. 51, 2138–2143.PubMedGoogle Scholar
  168. 167.
    Baker, M. S., Bleakley, P., Woodnow, G. C., and Doe, W. F. (1990) Inhibition of cancer cell urokinase plasminogen activator, by its specific inhibitor PAI-2 and subsequent effects on extracellular matrix degradation.Cancer Res. 50, 4676–4686.PubMedGoogle Scholar
  169. 168.
    Khoka, R., Waterhouse, P., Yagel, S., Lala, P. K., Overall, C. M., Norton, G., and Denhardt, D. T. (1989) Antisense RNA-induced reduction in murine TIMP levels confers, oncogenicity on Swiss 3T3 cells.Science 243, 947–950.CrossRefGoogle Scholar
  170. 169.
    Hamburger, A. W., White, C. P., and Dunn, F. E. (1985) Secretion of transforming growth factors by primary human tumour cells.Br. J. Cancer 51, 9–14.PubMedGoogle Scholar
  171. 170.
    Niitsu, Y., Watanabe, N., Neda, H., Yamauchi, N., Maeda, M., Sone, H., and Kuriyama, H. (1988) Induction of synthesis of tumour necrosis factor in human and murine cell lines by exogenous recombinant human tumour necrosis factor.Cancer Res. 48, 5407–5410.PubMedGoogle Scholar
  172. 171.
    Kronke, M., Hansel, G., Schluter, C., Scheurich, P., Schutze, S., and Pfizenmaier, D. (1988) Tumour necrosis factor and lymphotoxin gene expression in human tumour cell lines.Cancer Res. 48, 5417–5421.PubMedGoogle Scholar
  173. 172.
    Bennicelli, J. L., Elias, J., Kern, J., and Guerry, D. V. (1989) Production of interleukin-1 activity by cultured human melanoma cells.Cancer Res. 49, 930–935.PubMedGoogle Scholar
  174. 173.
    Perotti, D., Cimino, L., Falcioni, R., Tibursi, G., Gentileschi, M. P., and Sacchi, A. (1990) Metastatic phenotype: growth factor dependence and integrin expression.Anticancer Res. 10, 1587–1598.Google Scholar
  175. 174.
    Linkhart, T. A., Mohan, S., Jennings, J. C., and Baylink, D. J. (1989) Copurification of osteolytic and transforming growth factor β activities produced by human lung tumour cells associated with humoral hyper-calcemia of malignancy.Cancer Res. 49, 271–278.PubMedGoogle Scholar
  176. 175.
    Anzano, M. A., Rieman, D., Prichett, W., Bowen-Pope, D. F., and Greig, R. (1989) Growth factor production by human colon carcinoma cell lines.Cancer Res. 49, 2898–2904.PubMedGoogle Scholar
  177. 176.
    Ohmura, E., Okada, M., Onoda, N., Kamiya, Y., Murakami, H., Tsushima, T., and Shizume, K. (1990) Insulin-like growth factor I and transforming growth factor α as autocrine growth factors in human pancreatic cancer cell growth.Cancer Res. 50, 103–107.PubMedGoogle Scholar
  178. 177.
    Laiho, M. and Keski-Oja, J. (1989) Growth factors in the regulation of pericellular proteolysis: a review.Cancer Res. 49, 2533–2553.PubMedGoogle Scholar
  179. 178.
    Cavanaugh, P. P. G. and Nicolson, G. L. (1988) Isolation of a high molecular weight growth factor (LGF-1) for lung metastasizing mammary tumour cells from lung-conditioned media.Proc. Am. Assoc. Cancer Res. 29, 71.Google Scholar
  180. 179.
    Magro, C., Orr, F. W., Manishen, W. J., Sivananthan, K., and Mokashi, S. S. (1985) Adhesion, chemotaxis, and aggregation of Walker carcinosarcoma cells in response to products of resorbing bone.J. Natl. Cancer Inst. 74, 829–838.PubMedGoogle Scholar
  181. 180.
    Manishen, W. J., Sivananthan, K., and Orr, F. W. (1986) Resorbing bone stimulates tumor cell growth. A role for the host microenvironment in bone metastasis.Am. J. Pathol. 123, 39–45.PubMedGoogle Scholar
  182. 181.
    Miller-Book, W., Orr, F. W., and Singh, G. (1990) In vitro effects of bone and platelet-derived transforming growth factor-β on the growth of walker 256 carcinosarcoma cells.Clin. Exp. Metastasis 8, 503–510.CrossRefGoogle Scholar
  183. 182.
    Chung, L. W. K. (1991) Fibroblasts are critical determinants in prostatic cancer growth and dissemination.Cancer Metastasis Rev.10, 263–274.CrossRefGoogle Scholar
  184. 183a.
    Elliot, B., Ostman, A., Westermark, B., and Rubin, K. (1992) Modulation of growth factor responsiveness of murine mammary carcinoma cells by cell matrix interactions: correlation of cell proliferation and spreading.J. Cell. Physiol. 152, 292–301.CrossRefGoogle Scholar
  185. 183b.
    Elliot, B. E., Tam, S.-P., Dexter, D., and Chen, Z. Q. (1992) Capacity of adipose tissue to promote growth and metastasis of a murine mammary carcinoma: effect of estrogen and progesterone.Int. J. Cancer 51, 416–424.CrossRefGoogle Scholar
  186. 184.
    Pritchett, T. R., Wang, J. K. M., and Jones, P. A. (1989) Mesenchymal-epithelial interactions between normal and transformed human bladder cells.Cancer Res. 49, 2750–2754.PubMedGoogle Scholar
  187. 185.
    Lee, M. (1992) Structural and functional significance of cell adhesion molecules.Med. Sci. Res. 20, 539–542.Google Scholar
  188. 186.
    Albelda, S. M. (1993) Role of integrins and other cell adhesion molecules in tumour progression and metastasis.Lab. Invest. 68, 4–17.PubMedGoogle Scholar
  189. 187.
    Dedar, S. (1990) Integrins and tumour invasion.Bioessays 12, 583–590.CrossRefGoogle Scholar
  190. 188.
    Cheresh, D. A. (1991) Integrins in thrombosis, wound healing and cancer.Biochem. Soc. Trans. 19, 835–838.PubMedGoogle Scholar
  191. 189.
    Herlyn, M. and Malkowicz, S. B. (1991) Regulatory pathways in tumor growth and invasion.Lab. Invest. 65, 262–271.PubMedGoogle Scholar
  192. 190.
    Hynes, R. O. (1987) Integrins: a family of cell surface receptors.Cell 48, 549–554.PubMedCrossRefGoogle Scholar
  193. 191.
    Hynes, R. O. (1992) Integrins: versatility, modulation and signalling in cell adhesion.Cell 69, 11–25.PubMedCrossRefGoogle Scholar
  194. 192.
    Ruoslahti, E. (1991) Integrins.J. Clin. Invest. 87, 1–5.PubMedGoogle Scholar
  195. 193.
    Ignatius, M. J., Large, T. H., Houde, M., Tawil, J. W., Baron, A., Esch, F., Caronetto, S., and Reichardt, L. F. (1990) Molecular cloning of the rat integrin a1-subunit: a receptor for laminin and collagen.J. Cell Biol. 111, 709–720.PubMedCrossRefGoogle Scholar
  196. 194.
    Ignatius, M. J. and Reichardt, L. F. (1988) Identification of a neuronal laminin receptor: a Mr 200 k/120 K integrin heterodimer that binds laminin in cation divalent dependent manner.Neuron 1, 713–725.PubMedCrossRefGoogle Scholar
  197. 195.
    Tomaselli, K. J., Damsky, C. H., and Reichardt, L. F. (1988) Purification and characterization of mammalian integrins expressed by a rat neuronal cell line (PC12): evidence that they function as a/b heterodimeric receptors for laminin and type IV collagen.J. Cell Biol. 107, 1241–1252.PubMedCrossRefGoogle Scholar
  198. 196.
    Hall, D. E., Reichardt, L. F., Crowly, E., Holley, B., Moezzi, H., Sonnenberg, A., and Damsky, C. H. (1990) The a1/b1 and a6/b1 integrin heterodimers mediate cell attachment to distinct sites on laminin.J. Cell Biol. 110, 2175–2184.PubMedCrossRefGoogle Scholar
  199. 197.
    Zutter, M. M. and Santoro, S. A. (1990) Widespread histologic distribution of the a2b1 integrin cell-surface collagen receptor.Am. J. Pathol. 137, 113–120.PubMedGoogle Scholar
  200. 198.
    Wayner, E. A. and Carter, W. G. (1987) Identification of multiple cell adhesion receptors for collagen and fibronectin in human fibrosarcoma cells possessing unique a and b common subunits.J. Cell Bill. 105, 1873–1884.CrossRefGoogle Scholar
  201. 199.
    Kunicki, T. J., Nugent, D. J., Staats, S. J., Orchekowski, R. P., Wayner, E. A., and Carter, W. G. (1988) The human fibroblast class II extracellular matrix receptro mediates platelet adhesion to collagen and is identical to the platelet glycoprotein Ia-IIa complex.J. Biol. Chem. 263, 4516–4519.PubMedGoogle Scholar
  202. 200.
    Santoro, S. A., Rajpara, S. M., Staatz, W. D., and Woods, V. L. (1988) Isolation and characterization of a platelet surface collagen binding complex related to VLA-2.Biochem. Biophys. Res. Comm. 153, 217–223.PubMedCrossRefGoogle Scholar
  203. 201.
    Takada, Y., Wayner, E. A., Carter, W., and Hemler, M. E. (1988) The extracellular matrix receptors, ECMRII and ECMRI, for collagen and fibronectin correspond to VLA-2 and VLA-3 in the VLA family of heterodimers.J. Cell Biochem. 57, 385–393.CrossRefGoogle Scholar
  204. 202.
    Wayner, E. A., Carter, W. G., Piotrowicz, R. S., and Kunicki, T. J. (1988) The function of multiple extracellular matrix receptors in mediating cell adhesion to extracellular matrix: preparation of monoclonal antibodies to the fibronectin receptor that specifically inhibit cell adhesion to fibronectin and react with platelet glycoproteins Ic-IIa.J. Cell Biol. 107, 1881–1891.PubMedCrossRefGoogle Scholar
  205. 203.
    Elices, M. J. and Hemler, M. E. (1989) The human integrin VLA-2 is a collagen receptor on some cells and a collagen/laminin receptor on others.Proc. Natl. Acad. Sci. USA 86, 9906–9910.PubMedCrossRefGoogle Scholar
  206. 204.
    Languino, L. R., Gehlsen, K. R., Wayner, E., Carter, W. G., Engvall, E., and Ruoslahti, E. (1989) Endothelial cells use a2b1 integrin as a laminin receptor.J. Cell Biol. 109, 2455–2462.PubMedCrossRefGoogle Scholar
  207. 205.
    Takada, Y. and Hemler, M. E. (1989) The primary structure of the VLA-2/collagen receptor a2 subunit (platelet GPIa): homology to other integrins and the presence of a possible collagen-binding domain.J. Cell Biol. 109, 397–407.PubMedCrossRefGoogle Scholar
  208. 206.
    Kirchhofer, D., Languino, L. R., Ruoslahti, E., and Pierschbacher, M. D. (1991) a2b1 integrins from different cell types show different binding specificities.J. Biol. Chem. 265, 615–618.Google Scholar
  209. 207.
    Takada, Y., Strominger, J. L., and Hemler, M. E. (1987) The very late antigen family of heterodimers is part of a superfamily of adhesion molecules involved in adhesion and embryogenesis.Proc. Natl. Acad. Sci. USA 84, 3239–3243.PubMedCrossRefGoogle Scholar
  210. 208.
    Takada, Y., Murphy, E., Pil, P., Chen, C., Ginsberg, M. H., and Hemler, M. E. (1991) Molecular cloning and expression of the cDNA for a3 subunit of human a3b1 (VLA-3), an integrin receptor for fibronectin, laminin and collagen.J. Cell Biol. 115, 257–266.PubMedCrossRefGoogle Scholar
  211. 209.
    Gehlsen, K. R., Dillner, L., Engvall, E., and Ruoslahti, E. (1988) The human laminin receptor is a member of the integrin family of cell adhesion receptors.Science 241, 1228–1229.PubMedCrossRefGoogle Scholar
  212. 210.
    Gehlsen, K. R., Sriramarao, P., Furcht, L. T., and Skukitz, A. P. (1992) A synthetic peptide derived from the carboxy terminus of the laminin A chain represents a binding site for the a3b1 integrin.J. Cell Biol. 117, 449–459.PubMedCrossRefGoogle Scholar
  213. 211.
    Wayner, E. A., Garcia-Pardo, A., Humphries, M. J., McDonald, J. A., and Carter, W. G. (1989) Identification and characterization of the T lymphocyte adhesion receptor for an alternative cell attachment domain (CS-1) in plasma fibronectin.J. Cell Biol. 109, 1321–1330.PubMedCrossRefGoogle Scholar
  214. 212.
    Carter, W. G., Wayeer, E. A., Bouchard, T. S., and Kaur, P. (1990) The role of integrins a2b1 a3b1 in cell-cell and cell-substrate adhesion of human epidermal cells.J. Cell Biol. 110, 1387–1404.PubMedCrossRefGoogle Scholar
  215. 213.
    Carter, W. G., Ryan, M. C., and Gahr, P. J. (1991) Epiligrin: a new cell-adhesion ligand for integrin a3b1 in epithelial basement membranes.Cell 65, 599–610.PubMedCrossRefGoogle Scholar
  216. 214.
    Elices, M. J., Urry, L. A., and Hemler, M. E. (1991) Receptor functions for the integrin VLA-3: fibronectin, collagen and laminin binding are differentially influenced by arg-gly-asp peptide and by divalent cations.J. Cell Biol. 112, 169–181.PubMedCrossRefGoogle Scholar
  217. 215a.
    Hemler, M. E., Huang, C., and Schwarz, L. (1987) The VLA protein family.J. Biol. chem. 262, 3300–3309.PubMedGoogle Scholar
  218. 215b.
    Hemler, M. E., Huang, C., Takada, Y., Schwarz, L., Strominger, J. L., and Clabby, M. L. (1987) Characterization of the cell surface heterodima VLA-4 and related peptides.J. Biol. Chem. 262, 11,478–11,485.Google Scholar
  219. 216.
    Holzmann, B., McIntyre, B. W., and Weissman, I. L. (1989) Identification of a murine peyer's patch-specific lymphocyte homing receptor as a integrin molecule with an α chain homologous to human VLA-4α.Cell 56, 37–46.PubMedCrossRefGoogle Scholar
  220. 217.
    Holzmann, B. and Weissman, I. L. (1989) Peyer's patch-specific lymphocyte homing receptors consist of a VLA-4-like α chain associated with either of two integrin β chains, one of which is novel.EMBO J. 8, 1735–1741.PubMedGoogle Scholar
  221. 218.
    Takada, Y., Elices, M. J., Crouse, C., and Hemler, M. E. (1989) The primary structure of the α4 subunit of VLA-4: homology to other integrins and a possible cell-cell adhesion function.EMBO J. 8, 1361–1368.PubMedGoogle Scholar
  222. 219.
    Elices, M. J., Osborn, L., Takada, Y., Crouse, C., Luhowskyj, S., Hemler, M. E., and Lobb, R. R. (1990) VCAM-1 on activated endothelium interacts with the leukocyte integrin VLA-4 at a site distinct from the VLA-4/fibronectin binding site.Cell 60, 577–584.PubMedCrossRefGoogle Scholar
  223. 220.
    Guan, J.-L. and Hynes, R. O. (1990) Lymphoid cells recognize an alternatively spliced segment of fibronectin via the integrin receptor α4β1.Cell 60, 53–61.PubMedCrossRefGoogle Scholar
  224. 221.
    Mould, A. P., Wheldon, L. A., Komoriya, A., Wayner, E. A., Yamada, K. M., and Humphries, M. J. (1990) Affinity chromatographic isolation of the melanoma adhesion receptor for the IIICS region of fibronectin and its identification as the integrin α4β1.J. Biol. Chem. 265, 4020–4024.PubMedGoogle Scholar
  225. 222.
    Makarem, R. and Humphries, M. J. (1991) LDV: a novel cell adhesion motif recognized by the integrin α4β1.Biochem. Soc. Trans. 19, 380S.Google Scholar
  226. 223.
    Chan, B. M. C., Kassner, P. D., Schiro, J. A., Byers, H. R., Kupper, T. S., and Hemler, M. E. (1992) Distinct cellular functions mediated by different VLA integrin α subunit cytoplasmic domains.Cell 68, 1051–1060.PubMedCrossRefGoogle Scholar
  227. 224.
    Pierschbacher, M. D. and Ruoslahti, E. (1984) Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule.Nature 309, 30–33.PubMedCrossRefGoogle Scholar
  228. 225.
    Akiyama, S. K. and Yamada, K. M. (1985) Synthetic peptides competitively inhibit both direct binding to fibroblasts and functional biological assays for the purified cell-binding domain of fibronectin.J. Biol. Chem. 260, 10,402–10,405.Google Scholar
  229. 226.
    Ginsberg, M., Pierschbacher, M. D., Ruoslahti, E., Marguerire, G., and Plow, E. (1985) Inhibition of fibronectin binding to platelets by proteolytic fragments and synthetic peptides with support fibroblast adhesion.J. Biol. Chem. 260, 3931–3936.PubMedGoogle Scholar
  230. 227.
    Pytela, R., Pierschbacher, M. D., and Ruoslahti, E. (1985) Identification and isolation of a 140 kd cell surface glycoprotein with properties expected of a fibronectin receptor.Cell 40, 191–198.PubMedCrossRefGoogle Scholar
  231. 228.
    Pytela, R., Pierschbacher, M. D., Argraves, S., Suzuki, S., and Ruoslahti, E. (1987) Arginine-glycine-aspartic acid adhesion receptors.Methods Enzymol. 144, 475–489.PubMedCrossRefGoogle Scholar
  232. 229.
    Argraves, W. S., Pytela, R., Suzuki, S., Millan, J. L., Pierschbacher, M. D., and Ruoslahti, E. (1986) cDNA sequences from the α subunit of the fibronectin receptor predicts a transmembrane domain and a short cytoplasmic peptide.J. Biol. Chem. 261, 12,922–12,924.Google Scholar
  233. 230.
    Argraves, W. S., Suzuki, S., Arai, H., Thompson, K., Pierschbacher, M. D., and Ruoslahti, E. (1987) Amino acid sequence of the human fibronectin receptor.J. Cell Biol. 105, 1183–1190.PubMedCrossRefGoogle Scholar
  234. 231.
    Ruoslahti, E. and Pierschbacher, M. D. (1986) Arg-gly-asp: a versatile cell recognition signal.Cell 44, 517–518.PubMedCrossRefGoogle Scholar
  235. 232.
    Ruoslahti, E. (1988) Fibronectin and its receptors.Ann. Rev. Biochem. 57, 375–413.PubMedCrossRefGoogle Scholar
  236. 233.
    Cardarelli, P. M. and Pierschbacher, M. D. (1987) Identification of fibronectin receptors on T lymphocytes.J. Cell Biol. 105, 499–506.PubMedCrossRefGoogle Scholar
  237. 234.
    Dedar, S., Ruoslahti, E., and Pierschbacher, M. D. (1987) A cell surface receptor complex for collagen type I recognizes the arg-gly-asp sequence.J. Cell Biol. 104, 585–593.CrossRefGoogle Scholar
  238. 235.
    Takada, Y., Huang, C., and Hemler, M. E. (1987) Fibronectin receptor structures in the VLA family of heterodimers.Nature 326, 607–609.PubMedCrossRefGoogle Scholar
  239. 236.
    Ruoslahti, E. (1988) Fibronectin and its receptor.Ann. Rev. Biochem. 57, 375–413.PubMedCrossRefGoogle Scholar
  240. 237.
    Yamada, K. M., Kennedy, D. W., Yamada, S. S., Gralnick, H., Chen, W.-T., and Akiyama, S. K. (1990) Monoclonal antibody and synthetic peptide inhibitors of human tumour cell migration.Cancer Res. 50, 4485–4496.PubMedGoogle Scholar
  241. 238.
    Ylanne J. and Virtanen, I. (1989) The Mr 140,000 fibronectin receptor complex in normal and virus-transformed human fibroblasts and in fibrosarcoma cells: identical localization and function.Int. J. Cancer 43, 1126–1134.PubMedCrossRefGoogle Scholar
  242. 239.
    Akiyama, S. K., Yamada, S. S., Chen, W.-T., and Yamada, K. M. (1989) Analysis of fibronectin receptor function with monoclonal antibodies: roles in cell adhesion, migration, matrix assembly, and cytoskeletal organization.J. Cell Biol. 109, 863–875.PubMedCrossRefGoogle Scholar
  243. 240.
    Conforti, G., Zanetti, A., Colella, S., Abbadini, M., Marchisio, P. C., Pytela, R., Giancotti, F., Tarone, G., Languino, L. R., and Dejana, E. (1989) Interaction of fibronectin with cultured human endothelial cells: characterization of the specific receptor.Blood 73, 1576–1585.PubMedGoogle Scholar
  244. 241.
    Plantefaber, L. C. and Hynes, R. O. (1989) Changes in integrin receptors on oncogenically transformed cells.Cell 56, 281–290.PubMedCrossRefGoogle Scholar
  245. 242.
    Sonnenberg, A., Modderman, P. W., and Hogervorst, F. (1988) Laminin receptor on platelets is the integrin VLA-6.Nature 336, 487–489.PubMedCrossRefGoogle Scholar
  246. 243.
    Sonnenberg, A., Linders, C. J. T., Modderman, P. W., Damsky, C. H., Aumailley, M., and Timpl, R. (1990) Integrin recognition of different cell-binding fragments of laminin (P1, E3, E8) and evidence that α6β1 but not α6β4 functions as a major receptor for fragment E8.J. Cell Biol. 110, 2145–2155.PubMedCrossRefGoogle Scholar
  247. 244.
    Sonnenberg, A., Linders, C. J. T., Daams, J. H., and Kennel, S. J. (1990) The α6β1 (VLA-6) and α6β4 protein complexes: tissue distribution and biochemical properties.J. Cell Sci. 96, 207–217.PubMedGoogle Scholar
  248. 245.
    Hogervorst, F., Kuikman, I., van Kessel, A. G., and Sonnenberg, A. (1991) Molecular cloning of the human α6 subunit.Eur. J. Biochem. 199, 425–433.PubMedCrossRefGoogle Scholar
  249. 246.
    Kramer, R. H., Vu, M. P., Cheng, Y.-F., Ramos, D. M., Timpl, R., and Waleh, N. (1991) Laminin-binding integrin α7β1: functional characterization and expression in normal and malignant melanocytes.Cell Regul. 2, 805–817.PubMedGoogle Scholar
  250. 247.
    Bossy, B., Bodsy-Wetzel, E., and Reichardt, L. F. (1991) Characterization of the integrin α8 subunit: a new integrin β1-associated subunit, which is prominently expressed on axons and on cells in contact with basal laminae in chick embryos.EMBO J. 10, 2375–2385.PubMedGoogle Scholar
  251. 248.
    Bodary S. C. and McLean, J. W. (1990) The integrin β1 subunit associates with the vitronectin receptor αv subunit to form a novel vitronectin receptor in an embryonic kidney cell line.J. Cell Biol. 265, 5938–5941.Google Scholar
  252. 249.
    Dedar, S. and Gray, V. (1990) Isolation of a novel integrin receptor mediating arg-gly-asp-directed cell adhesion to fibronectin and type I collagen from human neuroblastoma cells, association of a novel β1-related subunit with αv.J. Cell Biol. 110, 2185–2193.CrossRefGoogle Scholar
  253. 250.
    Vogel, B. E., Tarone, G., Giancotti, F. G., Gailit, J., and Ruoslahti, E. (1990) A novel fibronectin receptor with an unexpected subunit composition (αvβ1).J. Bio. Chem. 265, 5934–5937.Google Scholar
  254. 251.
    Kishimoto, T. K., O'Connor, K., Lee, A., Roberts, T. M., and Springer, T. A. (1987) Cloning of the beta subunit of the leukocyte adhesion proteins: homology to an extracellular matrix receptor defines a novel super gene family.Cell 48, 681–690.PubMedCrossRefGoogle Scholar
  255. 252.
    Law, S. K. A., Gagnon, J., Hildreth, J. E. K., Wells, C. E., Wills, A. C., and Wong, A. J. (1987) The primary structure of the beta-subunit of the cell surface adhesion glycoproteins LFA-1, CR3 and P150, 95 and its relationship to the fibronectin receptor.EMBO J. 6, 915–919.PubMedGoogle Scholar
  256. 253.
    Marlin, S. D. and Springer, T. A. (1987) Purified intercellular adhesion molecule-1 (ICAM-1) is a ligand for lymphocyte function antigen 1 (LFA-1).Cell 51, 813–819.PubMedCrossRefGoogle Scholar
  257. 254.
    Dustin, M. L. and Springer, T. A. (1991) Role of lymphocyte adhesion receptors in transient interaction and cell locomotion.Ann. Rev. Immunol. 9, 2–66.CrossRefGoogle Scholar
  258. 255.
    Wright, S. D., Reddy, P. A., Colten, H. R., and Arnaout, M. A. (1987) C3bi receptor (complement receptor type 3) recognizes a region of complement protein C3 containing the sequence arg-gly-asp.Proc. Natl. Acad. Sci. USA 84, 1965–1975.PubMedCrossRefGoogle Scholar
  259. 256.
    Altieri, D. C. and Edginton, T. S. (1988) A monoclonal antibody reacting with distinct adhesion molecules defines a transition in the functional state of the receptor CD11b/CD18 (Mac-1).J. Immunol. 141, 2656–2660.PubMedGoogle Scholar
  260. 257.
    Larson, R. S., Corbi, A. L., Berman, L., and Springer, T. A. (1989) Primary structure of the leukocyte function-associated molecule-1 alpha subunit.J. Cell Biol. 108, 703–712.PubMedCrossRefGoogle Scholar
  261. 258.
    Diamond, M. S., Garcia-Aguilar, J., Bickford, J. K., Corbi, A. L., and Springer, T. A. (1993) The I domain is a major recognition site on the leukocyte integrin Mac-1 (CD11b/CD18) for four distinct adhesion ligands.J. Cell Biol. 120, 1031–1043.PubMedCrossRefGoogle Scholar
  262. 259.
    Diamond, M. S. and Springer, T. A. (1993) A subpopulation of Mac-1 (CD11b/CD18) molecules meditates neutrophil adhesion to ICAM-1 and fibrinogen.J. Cell Biol. 120, 545–556.PubMedCrossRefGoogle Scholar
  263. 260.
    Bennett, J. S., Vilaire, G., Cines, D. B. (1982) Identification of the fibrinogen receptor on human platelets by photoaffinity labeling.J. Biol. Chem. 257, 8049–8054.PubMedGoogle Scholar
  264. 261.
    Gardner, J. M. and Hynes, R. O. (1985) Interaction of fibronectin with its receptor on platelets.Cell 42, 439–449.PubMedCrossRefGoogle Scholar
  265. 262.
    Haverstick, D. M., Cowen, J. F., Yamada, K. M., and Santoro, S. A. (1985) Inhibition of platelet adhesion to fibronectin, fibrinogen and von Willebrand factor substrates by a synthetic tetrapeptide derived from the cell-binding domain of fibronectin.Blood 66, 946–952.PubMedGoogle Scholar
  266. 263.
    Plow, E. F., Loftus, J. C., Levin, E. G., Fair, D. S., Dixon, D., Forsyth, J., and Ginsberg, M. H. (1986) Immunologic relationship between platelet membrane glycoprotein GPIIb/IIIa and cell surface molecules expressed by a variety of cells.Proc. Natl. Acad. Sci. USA 83, 6002–6006.PubMedCrossRefGoogle Scholar
  267. 264.
    Pytela, R., Pierschbacher, M. D., Ginsberg, M. H., Plow, E. F., and Ruoslahti, E. (1986) Platelet membrane glycoprotein IIb/IIIa: a member of a family of arg-gly-asp-specific adhesion receptors.Science 231, 1559–1562.PubMedCrossRefGoogle Scholar
  268. 265.
    Santoro, S. A. and Lawing, W. J., Jr. (1987) Competition for related but non-identical binding sites on the glycoprotein IIb–IIIa complex.Cell 48, 867–873.PubMedCrossRefGoogle Scholar
  269. 266.
    Poncz, M., Eisman, R., Heidenreich, R., Silver, S. M., Vilaire, G., Surrey, S., Schwartz, E., and Bennet, J. S. (1987) Structure of the platelet membrane glycoprotein IIb.J. Biol. Chem. 262, 8476–8482.PubMedGoogle Scholar
  270. 267.
    D'Souza, S. E., Ginsberg, M. H., Burke, T. A., Lam, S. C.-T., and Plow, E. F. (1988) Localization of an arg-gly-asp recognition site with an integrin adhesion receptor.Science 242, 91–93.PubMedCrossRefGoogle Scholar
  271. 268.
    Rosa, J.-P., Bray, P. F., Gayet, O., Johnston, G. I., Cook, R. G., Jackson, K. W., Shuman, M. A., and McEver, R. P. (1988) Cloning of glycoprotein IIIa cDNA from human erythroleukemia cells and localization of the gene to chromosome 17.Blood 72, 593–600.PubMedGoogle Scholar
  272. 269.
    Lam, S. C.-T., Plow, E. F., D'Souza, S. E., Cheresh, D. A., Frelinger, A. L. III, and Ginsberg, M. H. (1989) Isolation and characterization of a platelet membrane protein related to the vitronectin receptor.J. Biol. Chem. 264, 3742–3749.PubMedGoogle Scholar
  273. 270.
    Lawler, J. and Hynes, R. O. (1986) The structure of human thrombospondin, an adhesive glycoprotein with multiple calcium-binding sites and homologies with several different proteins.J. Cell Biol. 103, 1635–1648.PubMedCrossRefGoogle Scholar
  274. 271.
    Smith, J. W., Ruggeri, Z. M., Kunicki, T. J., and Cheresh, D. A. (1990) Interaction of integrins αvβ3 and glycoprotein IIb–IIIa with fibrinogen. Differential peptide recognition accounts for distinct binding sites.J. Biol. Chem. 265, 12,267–12,271.Google Scholar
  275. 272.
    Pytela, R., Pierschbacher, M. E., and Ruoslahti, E. (1985) A 125/115 kDa cell surface receptor specific for vitronectin interacts with the arginine-glycine aspartic acid adhesion sequence derived from fibronectin.Proc. Natl. Acad. Sci. USA 82, 5766–5770.PubMedCrossRefGoogle Scholar
  276. 273.
    Suzuki, S., Argraves, W. S., Pytela, R., Arai, H., Krusius, T., Pierschbacher, M. D., and Ruoslahti, E. (1986) cDNA and amino acid sequences of the cell adhesion protein receptor recognizing vitronectin reveal a transmembrane domain and homologies with other adhesion protein receptors.Proc. Natl. Acad. Sci. USA 83, 8614–8619.PubMedCrossRefGoogle Scholar
  277. 274.
    Cheresh, D. A. (1987) Human endothelial cells synthesize and express an Arg-Gly-Asp-directed adhesion receptor involved in attachment to fibrinogen and von Willebrand factor.Proc. Natl. Acad. Sci. USA 84, 6471–6475.PubMedCrossRefGoogle Scholar
  278. 275.
    Cheresh, D. A. and Spiro, R. C. (1987) Biosynthetic and functional properties of an arg-gly-asp-directed receptor involved in human melanoma cell attachment to vitronectin, fibrinogen, and von Willebrand factor.J. Biol. Chem. 262, 17,703–17,711.Google Scholar
  279. 276.
    Cheresh, D. A. and Harper, J. R. (1987) Arg-Gly-Asp recognition by a cell adhesion receptor requires its 130 kDa alpha subunit.J. Biol. Chem. 262, 1434–1437.PubMedGoogle Scholar
  280. 277.
    Dejana, E., Colella, S., Languino, L. R., Balconi, G., Corbascio, G. C., and Marchisio, P. C. (1987) Fibrinogen induces adhesion, spreading, and microfilament organization of human endothelial cellsin vitro.J. Cell Biol. 104, 1403–1411.PubMedCrossRefGoogle Scholar
  281. 278.
    Dejana, E., Colella, S., Conforti, G., Abbadini, M., Gaboli, M., and Marchisio, P. C. (1988) Fibronectin and vitronectin regulate the organization of their respective Arg-Gly-Asp adhesion receptors in cultured human endothelial cells.J. Cell Biol. 107, 1215–1223.PubMedCrossRefGoogle Scholar
  282. 279.
    Dejana, E., Lampugnani, M. G., Giorgi, M., Gaboli, M., Federici, A. B., Ruggeri, Z. M., and Marchisio, P. C. (1989) Von Willebrand factor promotes endothelial cell adhesion via an arg-gly-asp-dependent mechanism.J. Cell Biol. 109, 367–375.PubMedCrossRefGoogle Scholar
  283. 280.
    Dejana, E., Lampugnani, M. G., Giorgi, M., Gaboli, M., and Marchisio, P. C. (1990) Fibrinogen induces endothelial cell adhesion and spreading via the release of endogenous matrix proteins and the recruitment of more than one integrin receptor.Blood 75, 1509–1517.PubMedGoogle Scholar
  284. 281.
    Lawler, J., Weinstein, R., and Hynes, R. O. (1988) Cell attachment to thrombospondin: the role of Arg-gly-asp, calcium and integrin receptors.J. Cell Biol. 107, 2351–2361.PubMedCrossRefGoogle Scholar
  285. 282.
    Oldberg, A., Franzen, A., Heinegard, D., Pierschbacher, M. D., and Ruoslahti, E. (1988) Identification of a bone sialoprotein receptor in osteosarcoma cells.J. Biol. Chem. 263, 19,433–19,436.Google Scholar
  286. 283.
    Smith, J. W. and Cheresh, D. A. (1988) The arg-gly-asp binding domain of the vitronectin receptor. Photoaffinity cross-linking implicates amino acid residues 61–203 of the β subunit.J. Biol. Chem. 263, 18,726–18,731.Google Scholar
  287. 284.
    Smith, J. W. and Cheresh, D. A. (1990) Integrin (αvβ3)-ligand interaction.J. Biol. Chem. 265, 2168–2172.PubMedGoogle Scholar
  288. 285.
    Conforti, G., Zanetti, A., Pasquali-Ronchetti, I., Quaglino, D., Jr., Neyroz, P., and Dejana, E. (1990) Modulation of vitronectin receptor binding by membrane lipid composition.J. Biol. Chem. 265, 4011–4019.PubMedGoogle Scholar
  289. 286.
    Kramer, R. H., Cheng, Y.-F., and Clyman, R. (1990) Human microvascular endothelial cells use β1 and β3 integrin receptor complexes to attach to laminin.J. Cell Biol. 111, 1233–1243.PubMedCrossRefGoogle Scholar
  290. 287.
    Smith, J. W. and Cheresh, D. A. (1990) Integrin (αvβ3)-ligand interaction. Identification of a heterodimeric RGD binding site on the vitronectin receptor.J. Biol. Chem. 265, 2168–2172.PubMedGoogle Scholar
  291. 288.
    Leavesley, D. I., Ferguson, G. D., Wayner, E. A., and Cheresh, D. A. (1992) Requirement of the integrin β subunit for carcinoma cell spreading or migration on vitronectin and fibrinogen.J. Cell Biol. 117, 1101–1107.PubMedCrossRefGoogle Scholar
  292. 289.
    Bourdon, M. A. and Ruoslahti, E. (1989) Tenascin mediates cell attachment through an RGD-dependent receptor.J. Cell Biol. 108, 1149–1155.PubMedCrossRefGoogle Scholar
  293. 290.
    Kajiji, S., Tamura, R. N., and Quaranta, V. (1989) A novel integrin (αEβ4) from human epithelial cells suggests a fourth family of integrin adhesion receptors.EMBO J. 8, 673–680.PubMedGoogle Scholar
  294. 291.
    Hogervorst, F., Kuikman, I., van der Borne, A. E. G., and Sonnenberg, A. (1990) Cloning and analysis of beta-4 cDNA: an integrin subunit that contains a unique 118 kd cytoplasmic domain.EMBO J. 9, 765–770.PubMedGoogle Scholar
  295. 292.
    Tamura, R. N., Rozzo, C., Starr, L., Chambers, J., Reichardt, L. F., Cooper, H. M., and Quaranta, V. (1990) Epithelial integrin α6β4: complete primary structure of α6 and variant forms of β4.J. Cell Biol. 111, 1593–1604.PubMedCrossRefGoogle Scholar
  296. 293.
    Cheresh, D. A., Smith, J. W., Cooper, H. M., and Quaranta, V. A. (1989) A novel vitronectin receptor integrin (αvβ3) is responsible for distinct adhesive properties of carcinoma cells.Cell 57, 59–69.PubMedCrossRefGoogle Scholar
  297. 294.
    Freed, E., Gailit, J., van der Geer, P., Ruoslahti, E., and Hunter, T. A. (1989) A novel integrin β subunit is associated with the vitronectin receptor α subunit (αv) in a human osteosarcoma cell line and is a substrate for protein kinase C.EMBO J. 8, 2955–2965.PubMedGoogle Scholar
  298. 295.
    McLean, J. W., Vestaf, D. J., Cheresh, D. A., and Bodary, S. C. (1990) cDNA sequence of the human integrin β5 subunit.J. Biol. Chem. 266, 17,126–17,131.Google Scholar
  299. 296.
    Ramaswarmi, H. and Hemler, M. E. (1990) Cloning, primary structure and properties of a novel human integrin β subunit.EMBO J. 9, 1561–1568.Google Scholar
  300. 297.
    Smith, J. W., Vestal, D. J., Irwin, S. V., Burkie, T. A., and Cheresh, D. A. (1990) Purification and functional characterization of integrin αvβ5.J. Biol. Chem. 265, 11,008–11,013.Google Scholar
  301. 298.
    Suzuki, S., Huang, Z.-S., and Tanahara, H. (1990) Cloning of an integrin β subunit exhibiting high homology with the integrin β3 subunit.Proc. Natl. Acad. Sci. USA 87, 5354–5358.PubMedCrossRefGoogle Scholar
  302. 299.
    Sheppard, D., Cohen, D. S., Wang, A., and Busk, M. (1992) Transforming growth factor β differentially regulates expression of integrin subunits in guinea pig airway epithelial cells.J. Biol. Chem. 267, 17,409–17,414.Google Scholar
  303. 300.
    Busk, M., Pytela, R., and Sheppard, D. (1992) Characterization of the integrin αvβ6 as a fibronectin-binding protein.J. Biol. Chem. 267, 5790–5796.PubMedGoogle Scholar
  304. 301.
    Erle, D. J., Ruegg, C., Sheppard, D., and Pytela, R. (1991) Complete amino acid sequence of an integrin β subunit (β7) identified in leukocytes.J. Biol. Chem. 266, 11,009–11,016.Google Scholar
  305. 302.
    Parker, C. M., Cepek, K. L., Russell, G. J., Shaw, S. K., Posnett, D. N., Schwarting, R., and Brenner, M. B. (1992) A family of β7 integrins on human mucosal lymphocytes.Proc. Natl. Acad. Sci. USA 89, 1924–1928.PubMedCrossRefGoogle Scholar
  306. 303.
    Moyle, M., Napier, M. A., and McLean, J. W. (1991) Cloning and expression of a divergent integrin subunit β8.J. Biol. Chem. 266, 19,650–19,658.Google Scholar
  307. 304.
    Shuman, M. A., Pytela, R., and Small, E. (1992) Characterization of integrin expression in human cancer cell lines and regulation by cytokines.J. Cell. Biochem. 58, 142.Google Scholar
  308. 305.
    Tonnenson, M. G., Anderson, D. C., Springer, T. A., Knedler, A., Avdi, N., and Henson, P. M. (1989) Adherence of neutrophils to cultured human microvascular endothelial cells.J. Clin. Invest. 83, 637–646.Google Scholar
  309. 306.
    Cheresh, D. A., Berliner, S. A., Vicente, V., and Ruggeri, Z. M. (1989) Recognition of distinct adhesive sites on fibrinogen by related integrins on platelets and endothelial cells.Cell 48, 945–953.CrossRefGoogle Scholar
  310. 307.
    Yuan, Q. A., Jiang, W. M., Krissansen, G. W., and Watson, J. D. (1990) Cloning and sequence analysis of a novel β2-related integrin transcript from T lymphocytes: homology of integrin cysteine-rich repeats to domain III of laminin B chains.Int. Immunol. 2, 1097–1108.PubMedCrossRefGoogle Scholar
  311. 308.
    Hemler, M. E., Crouse, C., and Sonnenberg, A. (1989) Association of the VLA α6 subunit with a novel protein.J. Biol. Chem. 263, 6529–6537.Google Scholar
  312. 309.
    Albelda, S. M., Daise, M., Levine, E. M., and Buck, C. A. (1989) Identification and characterization of cell-substratum adhesion receptor on cultured human endothelial cells.J. Clin. Invest. 83, 1992–2002.PubMedGoogle Scholar
  313. 310.
    Hemler, M. E. (1990) VLA proteins in the integrin family: structures, functions and their role on leukocytes.Ann. Rev. Immunol. 8, 365–400.CrossRefGoogle Scholar
  314. 311.
    Hemler, M. E., Crouse, C., Takada, Y., and Sonnenberg, A. (1988) Multiple very late antigen (VLA) heterodimers on platelets.J. Biol. Chem. 263, 7660–7665.PubMedGoogle Scholar
  315. 312.
    Arnaoat, M. A. (1990) Structure and function of the leukocyte adhesion molecules CD11/CD18.Blood 75, 1037–1050.Google Scholar
  316. 313.
    Fitzgerald, L. A., Charo, I. F., and Phillips, D. R. (1985) Human and bovine endothelial cells synthesize membrane proteins similar to human platelet glycoproteins IIb and IIIa.J. Biol. Chem. 260, 10,893–10,896.Google Scholar
  317. 314.
    Calvete, J. J., Henschen, A., and Gonzalez-Rodriguez, J. (1991) Assignment of disulfide bonds in human platelet GPIIIa. A disulfide pattern for the beta-subunits of the integrin family.Biochem. J. 274, 63–71.PubMedGoogle Scholar
  318. 315.
    Horwitz, A., Duggan, K., Buck, C., Beckerle, M. C., and Burridge, K. (1986) Interaction of plasma membrane fibronectin receptor with talin—a transmembrane linkage.Nature 320, 531–533.PubMedCrossRefGoogle Scholar
  319. 316.
    Burridge, K., Fath, K., Kelly, T., Nuckolls, G., and Turner, C. (1988) Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton.Ann. Rev. Cell Biol. 4, 487–525.PubMedGoogle Scholar
  320. 317.
    Otey, C. A., Pavalko, F. M., and Burridge, K. (1990) An interaction between α-actinin and the β1 integrin subunitin vitro.J. Cell Biol. 111, 721–729.PubMedCrossRefGoogle Scholar
  321. 318.
    Critchley, D. R., Gilmore, A., Hemmings, L., Jackson, P., McGregor, A., Ohanian, A., Patel, B., Waites, G., Wood, C. (1991) Cytoskeletal proteins in adherens-type-cell-matrix junctions.Biochem. Soc. Trans. 19, 1028–1033.PubMedGoogle Scholar
  322. 319.
    Pavalko, F. M., Otey, C. A., Simon, K. O., and Burridge, K. (1991) α-actinin: a direct link between actin and integrins.Biochem. Soc. Trans. 19, 1065–1069.PubMedGoogle Scholar
  323. 320.
    Reszka, A. A., Hayashi, Y., and Horwitz, A. F. (1992) Identification of amino acid sequences in the integrin β1 cytoplasmic domain implicated in cytoskeletal association.J. Cell Biol. 117, 1321–1330.PubMedCrossRefGoogle Scholar
  324. 321.
    Takada, Y., Ylanne, J., Mandelman, D., Puzon, W., and Ginsberg, M. H. (1992) A point mutation of integrin β1 subunit blocks binding of α5β1 to fibronectin and invasin but not recruitment to adhesion plaques.J. Cell Biol. 119, 913–921.PubMedCrossRefGoogle Scholar
  325. 322.
    Loftus, J. C., O'Toole, T. E., Plow, E. F., Glass, A., Frelinger, A. L. III, and Ginsberg, M. H. (1990) A β3 integrin mutation abolishes ligand binding and alters divalent cation-dependent conformation.Science 249, 915–918.PubMedCrossRefGoogle Scholar
  326. 323.
    Wayner, E. A., Orlando, R. A., and Cheresh, D. A. (1991) Integrins αvβ3 and αvβ5 contribute to cell attachment to vitronectin but differentially distribute on the cell surface.J. Cell Biol. 113, 919–929.PubMedCrossRefGoogle Scholar
  327. 324.
    van Kuppevelt, T. H. M. S. M., Languino, L. R., Galit, J. O., Suzuki, S., and Ruoslahti, E. (1989) An alternative cytoplasmic domain of the integrin β3 subunit.Proc. Natl. Acad. Sci. USA 86, 5415–5418.PubMedCrossRefGoogle Scholar
  328. 325.
    Altruda, F., Cervella, P., Tarone, G., Botta, C., Balzoc, F., Stefanuto, G., and Silengo, L. (1990) A human integrin β1 subunit with a unique cytoplasmic domain generated by alternative mRNA processing.Gene 95, 261–266.PubMedCrossRefGoogle Scholar
  329. 326.
    Balzac, F., Belkin, A. M., Koteliansky, V. E., Balabanov, Y. V., Altruda, F., Silengo, L., and Tarone, G. (1993) Expression and functional analysis of a cytoplasmic domain variant of the β1 integrin subunit.J. Cell Biol. 121, 171–178.PubMedCrossRefGoogle Scholar
  330. 327.
    Bray, P. F., Leung, C. S. I., and Shuman, M. A. (1990) Human platelets and megakaryocytes contain alternatively spliced glycoprotein IIb mRNAs.J. Biol. Chem. 265, 9587–9580.PubMedGoogle Scholar
  331. 328.
    Tamura, R. N., Cooper, H. M., Collo, G., and Quaranta, V. (1990) Cell type-specific integrin variants with alternative α chain cytoplasmic domains.Proc. Natl. Acad. Sci. USA 88, 10,183–10,187.Google Scholar
  332. 329.
    Hogervorst, F., Admirall, L. G., Jiessen, C., Kuikman, I., Janssen, H., Daams, H., and Sonnenberg, A. (1993) Biochemical characterization and tissue distribution of the A and B variants of the integrin α6 subunit.J. Cell Biol. 121, 179–191.PubMedCrossRefGoogle Scholar
  333. 330.
    Kirchhofer, D., Grezesiak, J., and Pierschbacher, M. D. (1991) Calcium as a potential physiological regulator of integrin-mediated cell adhesion.J. Biol. Chem. 266, 4471–4477.PubMedGoogle Scholar
  334. 331.
    Knudsen, K. A., Tuszguski, G. P., Huang, T.-F., and Niewiaronstag, S. (1988) Trigramin, an RGD-containing peptide from snake venom inhibits cell-substratum adhesion of human melanoma cells.Exp. Cell Res. 179, 42–49.PubMedCrossRefGoogle Scholar
  335. 332.
    Akiyama, S. K., Hasegawa, E., Hasegawa, T., and Yamada, K. M. (1985) The interaction of fibronectin fragments with fibroblastic cells.J. Biol. Chem. 260, 13,256–13,260.Google Scholar
  336. 333.
    Charo, I. F., Nannizzi, L., Smith, J. W., and Cheresh, D. A. (1990) The vitronectin receptor αvβ3 binds fibronectin and acts in concert with α5β1 in promoting cellular attachment and spreading on fibronectin.J. Cell Biol. 111, 2795–2800.PubMedCrossRefGoogle Scholar
  337. 334.
    McGregor, J. L., McGregor, L., Bauer, A.-S., Catimel, B., Brochier, J., Dechavanne, M., and Clemetson, K. J. (1986) Identification of two distinct regions within the binding sites for fibrinogen and fibronectin on the IIb-IIIa human platelet membrane glycoprotein complex by monoclonal antibodies P2 and P4.Eur. J. Biochem. 159, 443–449.PubMedCrossRefGoogle Scholar
  338. 335.
    Horton, M. (1990) Current status review. Vitronectin receptor: tissue specific expression or adaptation to culture?Int. J. Exp. Pathol. 71, 741–759.PubMedGoogle Scholar
  339. 336.
    van Mourik, J. A., von dem Borne, A. E. G., Jr., and Giltay, J. G. (1990) Pathophysiological significance of integrin expression by vascular endothelial cells.Biochem. Pharmacol. 39, 233–239.PubMedCrossRefGoogle Scholar
  340. 337.
    Bertomeu, M.-C., Turple, S., Lauri, D., Levine, M., Orr, F. W., and Buchanan, M. R. (1990) Chemotherapy enhances endothelial cell reactivity to platelets.Clin. Exp. Metastasis 8, 511–518.PubMedCrossRefGoogle Scholar
  341. 338.
    Miyake, K., Hasunuma, Y., Yagita, H., and Kimoto, M. (1992) Requirement for VLA-4 and VLA-5 integrins in lymphoma cells binding to and migration beneath stromal cells in culture.J. Cell Biol. 119, 653–662.PubMedCrossRefGoogle Scholar
  342. 339.
    Humphries, M. J., Akiyama, S. K., Komoriya, A. K., Olden, K., and Yamada, K. M. (1986) Identifiecation of an alternatively spliced site in human plasma fibronectin that mediated cell type-specific adhesion.J. Cell Biol. 103, 2637–2647.PubMedCrossRefGoogle Scholar
  343. 340.
    Rogers, S. L., Letourneau, P. C., Pech, I. V. (1989) The role of fibronectin in neural development.Dev. Neurosci. 11, 248–265.PubMedCrossRefGoogle Scholar
  344. 341.
    Oyama, F., Hirohashi, S., Shimosato, Y., Titani, K., and Sekiguchi, K. (1990) Oncodevelopmental regulation of the alternative splicing of fibronectin pre-messenger RNA in human lung tissues.Cancer Res. 50, 1075–1078.PubMedGoogle Scholar
  345. 342.
    Thiery, J.-P., Duband, J. L., Dufour, S., Savagner, P., and Imhof, B. A. (1989) Roles of fibronectins in development, inFibronectin. (Moser, D. F., ed.), Academic, New York, pp. 181–212.Google Scholar
  346. 343.
    Duband, J.-L., Dufour, S., Yamada, S. S., Yamada, K. M., and Thiery, J. P. (1991) Neural crest cell locomotion induced by antibodies to β1 integrins. A tool for studying the roles of substratum molecular avidity and density in migration.J. Cell Sci. 98, 517–532.PubMedGoogle Scholar
  347. 344.
    Dufour, S., Duband, J.-L., Humphries, M. J., Obara, M., Yamada, K. M., and Thiery, J. P. (1988) Attachment, spreading and locomotion of avian neural crest cells are mediated by multiple adhesion sites on fibronectin molecules.EMBO J. 7, 2661–2671.PubMedGoogle Scholar
  348. 345.
    Cheng, Y.-F., Clyman, R. I., Enenstein, J., Waleh, N., Pytela, R., and Kramer, R. H. (1991) The integrin complex αvβ3 participates in the adhesion of microvascular endothelial cells to fibronectin.Exp. Cell Res. 194, 69–77.PubMedCrossRefGoogle Scholar
  349. 346.
    Orlando, R. A. and Cheresh, D. A. (1991) Arginine-glycine-aspartic acid binding leading to molecular stabilization between integrin αvβ3 and its ligand.J. Biol. Chem. 266, 19,543–19,550.Google Scholar
  350. 347.
    Ylanne, J., Cheresh, D. A., and Virtanen, I. (1990) Localization of β1, β3, α5, αv and αIIb subunits of the integrin family in spreading human erythroleukemia cells.Blood 76, 570–577.PubMedGoogle Scholar
  351. 348.
    Hayman, E. G., Pierschbacher, M. D., and Ruoslahti, E. (1985) Detachment of cells from culture substrate by soluble fibronectin peptides.J. Cell Biol. 100, 1948–1954.PubMedCrossRefGoogle Scholar
  352. 349.
    Basson, C. T., Knowles, W. J., Bell, L., Albelda, S. M., Castronovo, V., Liotta, L. A., and Madri, J. A. (1990) Spatiotemporal segregation of endothelial cell integrin and nonintegrin extracellular matrix-binding proteins during adhesion events.J. Cell Biol. 110, 789–801.PubMedCrossRefGoogle Scholar
  353. 350.
    Larjava, H., Peltonen, J., Akiyama, S. K., Yamada, S. S., Gralnick, H. R., Uitto, J., and Yamada, K. M. (1990) A novel function for β1 integrins in keratinocyte cell-cell interactions.J. Cell Biol. 110, 803–815.PubMedCrossRefGoogle Scholar
  354. 351.
    Lampugnani, M. G., Resnati, M., Dejana, E., and Marchisio, P. C. (1991) The role of integrins in the maintenance of endothelial monolayer integrity.J. Cell Biol. 112, 479–490.PubMedCrossRefGoogle Scholar
  355. 352.
    Symington, B. E., Takada, Y., and Carter, W. G. (1993) Interaction of integrins α3β1 and α2β1: potential role in keratinocyte intercellular adhesion.J. Cell Biol. 120, 523–535.PubMedCrossRefGoogle Scholar
  356. 353.
    Yannariello-Brown, J., Wewer, U., Liotta, L. A., and Madri, J. A. (1988) Distribution of a 69-kD laminin-binding protein in aortic and microvascular endothelial cells: modulation during cell attachment, spreading and migration.J. Cell Biol. 106, 1773–1786.PubMedCrossRefGoogle Scholar
  357. 354.
    Werb, Z., Tremble, P. M., Behrendtsen, O., Crowley, E., and Damsky, C. (1989) Signal transduction through the fibronectin receptor induces collagenase and stromelysin gene expression.J. Cell Biol. 109, 877–987.PubMedCrossRefGoogle Scholar
  358. 355.
    Guan, J.-L., Trevithick, J. E., and Hynes, R. O. (1991) Fibronectin/integrin interaction induces tyrosine phosphorylation of a 120 kDa protein.Cell. Regul. 2, 951–964.PubMedGoogle Scholar
  359. 356.
    Kornberg, L. J., Earp, H. S., Turner, C. E., Prockop, C., and Juliano, R. L. (1991) Signal transduction by integrins: increased protein tyrosine phosphorylation caused by clustering of β1 integrins.Proc. Natl. Acad. Sci. USA 88, 8392–8396.PubMedCrossRefGoogle Scholar
  360. 357.
    Burridge, K., Turner, C. E., and Romer, L. H. (1992) Tyrosine phosphorylation of paxillin and pp125FAK accompanies cell adhesion to extracellular matrix: a role in cytoskeletal assembly.J. Cell Biol. 119, 893–903.PubMedCrossRefGoogle Scholar
  361. 358.
    Kanner, S. B., Reynolds, A. B., Vines, R. R., and Parsons, J. T. (1990) Monoclonal antibodies to individual tyrosine-phosphorylated protein substrates of oncogene-encoded tyrosine kinases.Proc. Natl. Acad. Sci. USA 87, 3328–3332.PubMedCrossRefGoogle Scholar
  362. 359.
    Schwartz, M. A., Ingber, D. E., Lawrence, M., Springer, T. A., and Lechene, C. (1991) Multiple integrins share the ability to induce elevation of intracellular pH.Exp. Cell Res. 195, 533–535.PubMedCrossRefGoogle Scholar
  363. 360.
    Ingber, D. E. and Folkman, J. (1989) How does extracellular matrix control capillary morphogenesis?Cell 58, 803–805.PubMedCrossRefGoogle Scholar
  364. 361.
    Ingber, D. E., Prusty, D., Frangioni, J. J., Cragoe, E. J., Jr., Lechene, C. P., and Schwartz, M. A. (1990) Control of intracellular pH and growth by fibronectin in capillary endothelial cells.J. Cell Biol. 110, 1803–1811.PubMedCrossRefGoogle Scholar
  365. 362.
    Yamada, A., Nikaido, T., Nojima, T., Schlossman, S. F., and Morimoto, C. (1991) Activation, of human CD4 T lymphocytes. Interaction of fibronectin with VLA-S receptor on CD4 cells induces the AP-1 transcription factor.J. Immunol. 146, 53–56.PubMedGoogle Scholar
  366. 363.
    Ruoslahti, E. and Giancotti, F. G. (1989) Integrins and tumour cell dissemination.Cancer Cells 1, 119–126.PubMedGoogle Scholar
  367. 364.
    Kramer, R. H., Bensch, K. G., and Karasek, M. A. (1987) Isolation and characterization of human vascular endothelial cells with application to studies of the subendothelial matrix, inCell Separation: Methods and Selected Applications (Pretlow, T. G. II. and Pretlow, T. P., eds.), Academic, Orlando, FL, pp. 1–27.Google Scholar
  368. 365.
    Koukoulis, G. K., Virtanen, I., Korhonen, M., Laitinen, L., Quaranta, V., and Gould, V. E. (1991) Immunohistochemical localization of integrins in the normal, hyperplastic and neoplastic breast.Am. J. Pathol. 139, 787–799.PubMedGoogle Scholar
  369. 366.
    Miettinen, M., Castello, R., Wayner, E., and Schwarting, R. (1993) Distribution of VLA integrins in solid tumors. Emergence of tumour-type-related expression patterns in carcinomas and sarcomas.Am. J. Pathol. 142, 1009–1018.PubMedGoogle Scholar
  370. 367.
    Albelda, S. M., Mette, S. A., Elder, D. E., Stewart, R., Damjanovich, L., Herlyn, M., and Buck C. A. (1990) Integrin distribution in malignant melanoma: association of the β3 subunit with tumour progression.Cancer Res. 50, 6757–6764.PubMedGoogle Scholar
  371. 368.
    Seftor, R. E. B., Seftor, E. A., Gehlsen, K. R., Stetler-Stevenson, W. G., Brown, P. D., Ruoslahti, E., and Hendrix, M. J. C. (1992) Role of the αvβ3 integrin in human melanoma cell invasion.Proc. Natl. Acad. Sci. USA 89, 1557–1561.PubMedCrossRefGoogle Scholar
  372. 369.
    Grossi, I. M., Hatfield, J. S., Fitzgerald, L. A., Newcombe, M., Taylor, J. D., and Honn, K. V. (1988) Role of tumour cell glycoproteins immunologically related to glycoproteins Ib and IIb/IIIa in tumour cell-platelet and tumour cell-matrix interactions.FASEB J. 2, 2385–2395.PubMedGoogle Scholar
  373. 370.
    Honn, K. V., Grossi, I. M., Diglio, C. A., Wojtukiewicz, M., and Taylor, J. D. (1989) Enhanced tumour cell adhesion to the subendothelial matrix resulting from 12(S)-HETE-induced endothelial cell retraction.FASEB J. 3, 2285–2293.PubMedGoogle Scholar
  374. 371.
    Honn, K. V., Chen, Y. Q., Timar, J., Onoda, J. M., Hatfield, J. S., Fligiel, S. E. G., Steinert, B. W., Diglio, C. A., Grossi, I. M., Nelson, K. K., and Taylor, J. D. (1992) αIIBβ3 integrin expression and function in subpopulations of murine tumors.Exp. Cell Res. 201, 23–32.PubMedCrossRefGoogle Scholar
  375. 372.
    Varani, J., Dixit, V. M., Fligiel, S. E. G., McKeever, P. E., and Cerey, T. E. (1986) Thrombospondin-induced attachment and spreading of human squamous carinoma cells.Exp. Cell Res. 167, 376–390.PubMedCrossRefGoogle Scholar
  376. 373.
    Vink, J., Thomas, L., Etoh, T., Bruijn, J. A., Mihm, M. C., Jr., Gattoni-Celli, S., and Byers, H. R. (1993) Role of beta-1 integrins in organ specific adhesion of melanoma cellsin vitro.Lab. Invest. 68, 192–203.PubMedGoogle Scholar
  377. 374.
    Rao, C. N., Barsky, S. H., Terranova, V. P., and Liotta, L. A. (1983) Isolation of a tumour cell laminin receptor.Biochem. Biophys. Res. Commun. 111, 804–808.PubMedCrossRefGoogle Scholar
  378. 375.
    Iwamoto, Y., Robey, F. A., Graf, J., Sasaki, M., Kleinman, H. K., Yamada, Y., and Martin, G. R. (1987) YIGSR, a synthetic laminin pentapeptide, inhibits experimental metastasis formation.Science 238, 1132–1134.PubMedCrossRefGoogle Scholar
  379. 376.
    Humphries, M. J., Olden, K., and Yamada, K. M. (1986) A synthetic peptide from fibronectin inhibits experimental metastasis of murine melanoma cells.Science 233, 467–470.PubMedCrossRefGoogle Scholar
  380. 377.
    Humphries, M. J., Yamada, K. M., and Olden, K. (1988) Investigation of the biological effects of anti-cell adhesive synthetic peptides that inhibit experimental metastasis of B16–F10 murine melanoma cells.J. Cell. Invest. 81, 782–790.Google Scholar
  381. 378.
    Murthy, M. S., Weiss, B. D., Miller, R. J., Trueheart, R., and Scanlon, E. F. (1992) Inhibition of tumour implantation at sites of trauma by Arg-gly-asp containing proteins and peptides.Clin. Exp. Metastasis 10, 39–47.PubMedCrossRefGoogle Scholar
  382. 379.
    Bertomeu, M.-C., Gallo, S., Lauri, D., Haas, T. A., Orr, F. W., Bastida, E., and Buchanan, M. R. (1993) Interleukin-1-induced cancer cell/endothelial cell adhesionin vitro and its relationship to metastasisin vivo: role of 13-HODE synthesis and integrin expression.Invasion Metastasis 13, 243–250.Google Scholar
  383. 380.
    Saiki, I., Ikda, J., Murata, J., Ogawa, R., Nishi, N., Sugimura, K., Tokura, S., and Azuma, I. (1989) Inhibition of the metastasis of murine malignant melanoma by synthetic polymeric peptides containing core sequences of cell-adhesive molecules.Cancer Res. 49, 3815–3822.PubMedGoogle Scholar
  384. 381.
    Tressler, R. J., Belloni, P. N., and Nicolson, G. L. (1989) Correlation of inhibition of adhesion of large cell lymphoma and hepatic sinusoidal endothelial cells by RGD-containing peptide polymers with metastatic potential: role of integrin-dependent and-independent adhesion mechanisms.Cancer Commun. 1, 55–63.PubMedGoogle Scholar
  385. 382.
    Gehlsen, K. R., Argraves, W. S., Pierschbacher, M. D., and Ruoslahti, E. (1988) Inhibition ofin vitro tumour cell invasion by arg-gly-asp-containing peptides.J. Cell Biol. 106, 925–930.PubMedCrossRefGoogle Scholar
  386. 383.
    Stoolman, L. M., Yednock, T. A., and Rosen, S. D. (1987) Homing receptors on human and rodent lymphocytes—evidence for a conserved carbohydrate-binding specificity.Blood 70, 1842–1850.PubMedGoogle Scholar
  387. 384.
    Butcher, E. C. (1990) Cellular and molecular mechanisms that direct leukocyte traffic.Am. J. Pathol. 136, 3–11.PubMedGoogle Scholar
  388. 385.
    Butcher, E. C. (1991) Leukocyte-endothelial cell recognition: three (or more) steps to specificity and diversity.Cell 67, 1033–1036.PubMedCrossRefGoogle Scholar
  389. 386.
    Michl, J., Qiu, Q.-Y., and Kuerer, H. M. (1991) Homing receptors and addressins,Curr. Opinion Immunol. 3, 373–382.CrossRefGoogle Scholar
  390. 387.
    Issekutz, T. B. (1992) Lymphocyte homing to sites of inflammation.Curr. Opinion Immunol. 4, 287–293.CrossRefGoogle Scholar
  391. 388.
    Pardi, R., Inverardi, L., and Bender, J. R. (1992) Regulatory mechanisms in leukocyte adhesion: flexible receptors for sophisticated travellers.Immunol. Today 13, 224–230.PubMedCrossRefGoogle Scholar
  392. 389.
    Picker, L. J. (1992) Mechanisms of lymphocyte homing.Curr. Opinion Immunol. 4, 227–286.Google Scholar
  393. 390.
    Zimmerman, G. A., Prescott, S. M., and McIntyre, T. M. (1992) Endothelial cell interactions with granulocytes: tethering and signalling molecules.Immunol. Today 13, 93–100.PubMedCrossRefGoogle Scholar
  394. 391.
    Hahne, M., Jager, U., Isenmann, S., Hallman, R., and Vestweber, D. (1993) Five tumour necrosis factor-inducible cell adhesion mechanisms on the surface of mouse endothelioma cells mediate the binding of leukocytes.J. Cell Biol. 121, 655–664.PubMedCrossRefGoogle Scholar
  395. 392.
    Brandley, B. K., Swieder, S. J., and Robbins, P. W. (1990) Carbohydrate ligands of the LEC cell adhesion molecules.Cell 63, 861–863.PubMedCrossRefGoogle Scholar
  396. 393.
    Berg, E. L., Robinson, M. K., Mansson, O., Butcher, E. C., and Magnani, J. L. (1991) A carbohydrate domain common to both Sialyl Lea and Sialyl Lex is recognized by the endothelial cell leukocyte adhesion molecule ELAM-1.J. Biol. Chem. 266, 14,869–14,872.Google Scholar
  397. 394.
    Erbe, D. V., Wolitzky, B. A., Presta, L. G., Norton, C. R., Ramos, R. J., Burns, D. K., Rumberger, J. M., Rao, B. N. N., Foxall, C., Brandley, B. K., and Lasky, L. A. (1992) Identification of an E-selectin region critical for carbohydrate recognition and cell adhesion.J. Cell Biol. 119, 215–227.PubMedCrossRefGoogle Scholar
  398. 395.
    Erbe, D. V., Watson, S. R., Presta, L. G., Wolitzky, B. A., Foxall, C., Brandley, B. K., and Lasky, L. A. (1993) P- and E-selectin use common sites for carbohydrate ligand recognition and cell adhesion.J. Cell Biol. 120, 1227–1235.PubMedCrossRefGoogle Scholar
  399. 396.
    Pober, J. S., Bevilacqua, M. P., Mendrick, D. L., Lapierre, L. A., Fiers, W., and Gimbrone, M. A., Jr. (1986) Two distinct monokines, interleukin-1 and tumour necrosis factor, each independently induced biosynthesis and transient expression of the same antigen on the surface of cultured human vascular endothelial cells.J. Immunol. 136, 1680–1687.PubMedGoogle Scholar
  400. 397.
    Bevilacqua, M. P., Pober, J. S., Wheeler, E., Cotran, R. S., and Gimbrone, M. A., Jr. (1985) Interleukin 1 acts on cultured human vascular endothelium to increase the adhesion of polymorphonuclear leukocytes, monocytes, and related leukocyte cell lines.J. Clin. Invest. 76, 2003–2011.PubMedGoogle Scholar
  401. 398.
    Bevilacqua, M. P., Pober, J. S., Mendrick, D. L., Cotran, R. S., and Gimbrone, M. A., Jr. (1987) Identification of an inducible endothelial-leukocyte adhesion molecule.Proc. Natl. Acad. Sci. USA 84, 9238–9242.PubMedCrossRefGoogle Scholar
  402. 399.
    Bevilacqua, M. P., Stengelen, S., Gimbrone, M. A., Jr., and Seed, B. (1989) Endothelial leukocyte adhesion molecule 1: an inducible receptor for neutrophils related to complement regulatory proteins and lectins.Science 241, 1160–1165.CrossRefGoogle Scholar
  403. 400.
    Lauri, D., Needham, L., Martin-Padura, I., and Dejana, E. (1991) Tumour cell adhesion to endothelial cells: endothelial leukocyte adhesion molecule-1 a as an inducible adhesive receptor specific for colon carcinoma cells.J. Natl. Cancer Inst. 83, 1321–1324.PubMedCrossRefGoogle Scholar
  404. 401.
    Pohlman, T. H., Stanness, K. A., Beatty, P. O., Ochs, H. D., and Harlan, J. M. (1986) An endothelial cell surface factor(s) inducedin vitro by lipopolysaccharide, interleukin 1, and tumour necrosis factor-α increases neutrophil adherence by a DCw18-dependent mechanism.J. Immunol. 136, 4548–4553.PubMedGoogle Scholar
  405. 402.
    Rice, G. E. and Bevilacqua, M. P. (1989) An inducible endothelial cell surface glycoprotein mediates melanoma adhesion.Science 246, 1303–1306.PubMedCrossRefGoogle Scholar
  406. 403.
    Bevilacqua, M. P., Stenglin, S., Gimbrone, M. A., Jr., and Seed, B. (1989) Endothelial leukocyte adhesion molecule 1: an inducible receptor for neutrophils related to complement regulatory protein.Science 243, 1160–1165.PubMedCrossRefGoogle Scholar
  407. 404.
    Collins, T., Williams, A., Johnston, G. I., Kim, J., Eddy, R., Shows, T., Gimbrone, M. A., Jr., and Bevilacqua, M. P. (1991) Structure and chromosomal location of the gene for endothelial-leukocyte adhesion molecule 1.J. Biol. Chem. 266, 2466–2473.PubMedGoogle Scholar
  408. 405.
    Fries, J. W. U., Williams, A. J., Atkins, R. C., Newman, W., Lipscomb, M. F., and Tucker, C. (1993) Expression of VCAM-1 and E-selectin in anin vivo model of endothelial activation.Am. J. Pathol. 143, 725–737.PubMedGoogle Scholar
  409. 406.
    Gundel, R. H., Wegner, C. D., Torcellini, C. A., Clarke, C. C., Haynes, N., Rothlein, R., Smith, C. W., and Letts, L. G. (1991) Endothelial leukocyte adhesion molecule-1 mediates antigen-induced acute airway inflammation and late-phase airway obstruction in monkeys.J. Clin. Invest. 88, 1407–1411.PubMedGoogle Scholar
  410. 407.
    Rice, G. E., Munro, J. M., Corless, C., and Bevilacqua, M. P. (1991) Vascular and nonvascular expression of INCAM-110.Am. J. Pathol. 138, 385–393.PubMedGoogle Scholar
  411. 408.
    Luscinskas, F. W., Cybulsky, M. I., Kiely, J.-M., Peckins, C. S., Davis, V. M., and Gimbrone, M. A., Jr. (1991) Cytokine-activated human endothelial monolayers support enhanced neutrophil transmigration via a mechanism involving both endothelial-leukocyte adhesion molecule-1 and intercellular adhesion molecule-1.J. Immunol. 146, 1617–1625.PubMedGoogle Scholar
  412. 409.
    Cybulski, M. I. and Gimbrone, M. A. (1991) Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis.Science 251, 788–794.CrossRefGoogle Scholar
  413. 410.
    Picker, L. J., Warnock, R. A., Burns, A. R., Doerschuk, C. M., Berg, E. L., and Butcher, E. C. (1991) The neutrophil selectin LECAM-1 presents carbohydrate ligands to the vascular selectins ELAM-1 and GMP-140.Cell 66, 921–933.PubMedCrossRefGoogle Scholar
  414. 411.
    Erbe, D. V., Wolitzky, B. A., Presta, L. G., Norton, C. R., Ramos, R. J., Burns, D. K., Rumberger, J. M., Rao, B. N. N., Foxall, C., Brandley, B. K., and Lasky, L. A. (1992) Identification of an E-selectin region critical for carbohydrate recognition and cell adhesion.J. Cell Biol. 119, 215–227.PubMedCrossRefGoogle Scholar
  415. 412.
    Feizi, T. (1992) Blood group-related oligosaccharides are ligands in cell-adhesion events.Biochem. Soc. Trans. 20, 274–278.PubMedGoogle Scholar
  416. 413.
    Kruijupers, T. W., Hoogerwerf, M., van der Laan, L. J. W., Nagel, G., van der Schoot, C. E., Grunert, F., and Roos, D. (1992) CD66 Nonspecific cross-reacting antigens are involved in neutrophil adherence to cytokin-activated endothelila cells.J. Cell Biol. 118, 457–466.CrossRefGoogle Scholar
  417. 414.
    Lewinsohn, D. M., Bargatze, R. F., and Butcher, E. C. (1987) Leukocyte-endothelial cell recognition: evidence of a common molecular mechanism shared by neutrophils, lymphocytes and other leukocytes.J. Immunol. 138, 4313–4321.PubMedGoogle Scholar
  418. 415.
    Stoolman, L. M. and Kabjian, E. (1992) Adhesion molecules involved in the trafficking of normal and malignant leukocytes.Invasion Metastasis 12, 101–111.PubMedGoogle Scholar
  419. 416.
    Gallatin, M., Butcher, E. C., and Weissman, I. L. (1983) A cell surface molecule involved in organ-specific homing of lymphocytes.Nature 340, 30–34.CrossRefGoogle Scholar
  420. 417.
    Ord, D. C., Ernst, T. J., Zhou, L.-J., Rambaldi, S., Spertini, O., Griffin, J., and Tedder, T. F. (1990) Structure of the gene encoding the human leukocyte adhesion molecules-1 (TQ1, Leu-8) of lymphocytes and neutrophils.J. Biol. Chem. 265, 7760–7767.PubMedGoogle Scholar
  421. 418.
    Tedder, T. F., Isaacs, C. M., Ernst, T. J., Demetri, G. D., Adler, D. A., and Disteche, C. M. (1989) Isolation and chromosomal localization of cDNAs encoding a novel human lymphocyte cell surface molecule, LAM-1.J. Exp. Med. 170, 123–133.PubMedCrossRefGoogle Scholar
  422. 419.
    Siegelman, M. H., van de Rijn, M., and Weissman, I. L. (1989) Mouse lymph node homing receptor cDNA clone encodes a glycoprotein revealing tandem interaction domains.Science 243, 1165–1172.PubMedCrossRefGoogle Scholar
  423. 420.
    Bowen, B. R., Nguyen, T., and Lasky, L. A. (1989) Characterization of a human homologue of the murine peripheral lymph node homing receptor.J. Cell Biol. 109, 421–427.PubMedCrossRefGoogle Scholar
  424. 421.
    Kishimoto, T. K., Jutila, M. A., Berg, E. L., and Butcher, E. C. (1989) Neutrophil Mac-1 and MEL-14 adhesion proteins inversely regulated by chemotactic factors.Science 245, 1238–1241.PubMedCrossRefGoogle Scholar
  425. 422.
    Jung, T. M. and Dailey, M. O. (1990) Rapid modulation of homing receptors (gp mel-14) induced by activators of protein kinase C.J. Immunol. 144, 3130–3136.PubMedGoogle Scholar
  426. 423.
    Law, S. K. A. (1991) Antigen shedding and metastasis of tumour cells.Clin. Exp. Immunol. 85, 1–2.PubMedCrossRefGoogle Scholar
  427. 424.
    Schleiffenbaum, B., Spertini, O., and Tedder, T. F. (1992) Soluble L-selectin is present in human plasma at high levels and retains functional activity.J. Cell Biol. 119, 229–238.PubMedCrossRefGoogle Scholar
  428. 425.
    Imai, Y., Singer, M. S., Fennie, C., Lasky, L. A., and Rosen, S. D. (1991) Identification of a carbohydrate-based endothelial ligand for a lymphocyte homing receptor.J. Cell Biol. 113, 1213–1221.PubMedCrossRefGoogle Scholar
  429. 426.
    Foxall, C., Watson, S. R., Dowbenko, D., Fennie, C., Lasky, L. A., Kiso, M., Hasegawa, A., Asa, D., and Brandley, B. K. (1992) The three members of the selectin family recognize a common carbohydrate epitope, the sialyl Lewisx oligosaccharide.J. Cell Biol. 117, 895–902.PubMedCrossRefGoogle Scholar
  430. 427.
    Lasky, L. A., Singer, M. S., Dowbenko, D., Imai, Y., Henzel, W. J., Grimley, C., Fennie, C., Gillett, N., Watson, S. R., and Rosen, S. D. (1992) An endothelial ligand for L-selectin is a novel mucin-like molecule.Cell 69, 927–938.PubMedCrossRefGoogle Scholar
  431. 428.
    True, D. D., Singer, M. S., Lasky, L. A., and Rosen, S. D. (1990) Requirement for sialic acid on the endothelial ligand of a lymphocyte homing receptor.J. Cell Biol. 111, 2757–2764.PubMedCrossRefGoogle Scholar
  432. 429.
    Spertini, O., Luscinskas, F. W., Kansas, G. S., Munro, J. M., Griffin, J. D., Gimbrone, M. A., Jr., and Tedder, T. F. (1991) Leukocyte adhesion molecule-1 (LAM-1, L-selectin) interacts with an inducible endothelial ligand to support leukocyte adhesion.J. Immunol. 147, 2565–2573.PubMedGoogle Scholar
  433. 430.
    Spertini, O., Kansas, G. S., Munro, J. M., Griffin, J. D., and Tedder, T. F. (1991) Regulation of leukocyte migration by activation of the leukocyte adhesion molecule-1 (LAM-1) selectin.Nature 349, 691–694.PubMedCrossRefGoogle Scholar
  434. 431.
    Stenberg, P. E., McEver, R. P., Shuman, M. A., Jacques, Y. V., and Bainton, D. F. (1985) A platelet alpha-granule membrane protein (GMP-140) is expressed on the plasma membrane after activation.J. Cell Biol. 101, 880–886.PubMedCrossRefGoogle Scholar
  435. 432.
    Berman, C. L., Yeo, E. L., Wencel-Drake, J. D., Furie, B. C., Ginsberg, M. H., and Furie, B. (1986) A platelet alpha granule membrane protein that is associated with the plasma membrane after activation.J. Clin. Invest. 78, 130–137.PubMedGoogle Scholar
  436. 433.
    Israels, S. J., Gerrard, J. M., Jacques, Y. V., McNicol, A., Cham, B., Nishibori, M., and Bainton, D. F. (1992) Platelet dense granule membranes contain both granulophysin and P-selectin (GMP-140).Blood 80, 143–152.PubMedGoogle Scholar
  437. 434.
    McEver, R. R. P., Beckstead, J. H., Moore, K. L., Marshall-Carlson, L., and Bainton, D. F. (1989) GMP-140, a platelet alfa-granule membrane protein, is also synthesized by vascular endothelial cells and is localized in Weibel-Palade bodies.J. Clin. Invest. 84, 92–99.PubMedCrossRefGoogle Scholar
  438. 435.
    Bonfanti, R., Furie, B. C., Furie, B., and Wagner, D. D. (1989) PADGEM (GMP140) is a component of Weibel-Palade bodies of human endothelial cells.Blood 73, 1109–1112.PubMedGoogle Scholar
  439. 436.
    Johnson, G. I., Cook, R. G., and McEver, R. P. (1989) Cloning of GMP-140 a granule membrane protein of platelets and endothelium: sequence similarity to proteins involved in cell adhesion and inflammation.Cell 56, 1033–1044.CrossRefGoogle Scholar
  440. 437.
    Hsu-Lin, S.-C., Berman, C. L., Furie, B. C., August, D., and Furie, B. (1984) A platelet membrane protein expressed during platelet activation and secretion. Studies using a monoclonal antibody specific for thrombin-activated platelets.J. Biol. Chem. 259, 9121–9126.PubMedGoogle Scholar
  441. 438.
    Hattori, R., Hamilton, K. K., Fugate, R. D., McEver, R. P., and Sims, P. J. (1989) Stimulated secretion of endothelial von Willebrand factor is accompanied by rapid redistribution to the cell surface of the intracellular granule membrane protein GMP-140.J. Biol. Chem. 264, 7768–7771.PubMedGoogle Scholar
  442. 439.
    Patel, K. D., Zimmerman, G. A., Prescott, S. M., McEver, R. P., and McIntyre, T. M. (1991) Oxygen radicals induce human endothelial cells to express GMP-140 and bind neutrophils.J. Cell Biol. 112, 749–759.PubMedCrossRefGoogle Scholar
  443. 440.
    Larson R. S. and Springer, T. A. (1990) Structure and function of the leukocyte integrins.Immunol. Rev. 114, 181–217.PubMedCrossRefGoogle Scholar
  444. 441.
    Aruffo, A., Stamenkovic, I., Melnick, M., Underhill, C. B., and Seed, B. (1990) CD44 is the principal cell surface receptor for hyaluronate.Cell 61, 1303–1313.PubMedCrossRefGoogle Scholar
  445. 442.
    Skinner, M. P., Lucas, C. M., Burns, G. F., Chesterman, C. N., and Berndt, M. C. (1991) GMP-140 binding to neutrophils is inhibited by sulfated glycans.J. Biol. Chem. 266, 5371–5374.PubMedGoogle Scholar
  446. 443.
    Moore, K. L., Stults, N. L., Diaz, S., Smith, D. F., Cummings, R. D., Varki, A., and McEver, R. P. (1992) Identification of a specific glycoprotein ligand for P-selectin (CD62) on myeloid cells.J. Cell Biol. 118, 445–456.PubMedCrossRefGoogle Scholar
  447. 444.
    Aruffo, A., Kolanus, W., Walz, G., Fredman, P., and Seed, B. (1991) CD62/ P-selectin recognition of myeloid and tumor cell sulfatides.Cell 67, 35–44.PubMedCrossRefGoogle Scholar
  448. 445.
    Aruffo, A., Dietsch, M., Wan, H., Hellstrom, K. E., and Hellstrom, I. (1992) Granule membrane proteins 140 (GMP140) binds to carcinomas and carcinoma-derived cell lines.Proc. Natl. Acad. Sci. USA 89, 2292–2296.PubMedCrossRefGoogle Scholar
  449. 446.
    Cunningham, B. A., Hemperly, J. J., Murray, B. A., Prdiger, E. A., Brackenbury, R., and Edelman, G. M. (1987) Neural cell adhesion molecule: structure, immunoglobulin-like domains, cell surface modulation, and alternative RNA splicing.Science 236, 779–814.CrossRefGoogle Scholar
  450. 447.
    Williams, A. F. and Barclay, A. N. (1988) The immunoglobulin superfamily domains for cell surface recognition.Ann. Rev. Immunol. 6, 381–405.Google Scholar
  451. 448.
    Hunkapillar, T. and Hood, L. (1989) Diversity of the immunoglobulin gene superfamily.Adv. Immunol. 44, 1–63.CrossRefGoogle Scholar
  452. 449.
    Springer, T. A. (1990) Adhesion receptors of the immune system.Nature 346, 425–434.PubMedCrossRefGoogle Scholar
  453. 450.
    Edelman, G. M. and Crossin, K. L. (1991) Cell adhesion molecules: implications for a molecular histology.Ann. Rev. Biochem. 60, 155–190.PubMedCrossRefGoogle Scholar
  454. 451.
    Santoni, M. J., Barthels, D., Vopper, G., Boned, A., Goridis, C., and Wille, W. (1989) Differential exon usage involving an unusual splicing mechanism generates at least eight types of NCAM cDNA in mouse brain.EMBO J. 8, 385–392.PubMedGoogle Scholar
  455. 452.
    Furley, A. J., Morton, S. B., Manalo, D., Karagogeos, D., Dodd, J., and Jessell, T. M. (1989) The axonal glycoprotein TAG-1 is an immunoglobulin superfamily member with neurite outgrowth-promoting activity.Cell 61, 157–170.CrossRefGoogle Scholar
  456. 453.
    Lampugnani, R., Ratieri, M., Pigott, R., Pisacane, A., Horien, G., Ruco, L. P., and Dejana, E. (1992) A novel endothelial-specific membrane-protein is a marker of cell-cell contacts.J. Cell Biol. 118, 1511–1522.PubMedCrossRefGoogle Scholar
  457. 454.
    Reyes, A. A., Akeson, R., Brezina, L., and Cole, G. J. (1990) Structural requirements for neural cell adhesion molecule-heparin interaction.Cell Regul. 1, 567–576.PubMedGoogle Scholar
  458. 455.
    Staunton, D. E., Marlin, S. D., Stratowa, C., Dustin, M. L., and Springer, T. A. (1988) Primary structure of ICAM-1 demonstrates interaction between members of the immunoglobulin and integrin supergene families.Cell 52, 925–933.PubMedCrossRefGoogle Scholar
  459. 456.
    Staunton, D. E., Dustin, M. L., and Springer, T. A. (1989) Functional cloning of ICAM-2, a cell adhesion ligand for LFA-1 homologous to ICAM-1.Nature 339, 61–64.PubMedCrossRefGoogle Scholar
  460. 457.
    Elices, M. J., Osborn, L., Takada, Y., Crouse, C., Luhowskyj, S., Hemler, M. E., and Lobb, R. R. (1990) VCAM-1 on activated endothelium interacts with the leukocyte integrin VLA-4 at a site distinct from the VLA-4/fibronectin binding site.Cell 60, 577–584.PubMedCrossRefGoogle Scholar
  461. 458.
    Albelda, S. M. (1993) Role of integrins and other cell adhesion molecules in tumour progression and metastasis.Lab. Invest. 68, 4–17.PubMedGoogle Scholar
  462. 459.
    Shuster, J., Thomson, D. M. P., Fuks, A., and Gold, P. (1980) Immunolgic approaches to the diagnosis of malignancy.Prog. Exp. Tumor Res. 25, 89–139.PubMedGoogle Scholar
  463. 460.
    Boucher, D., Cournoyer, D, Stanners, C. P., and Fuks, A. (1989) Studies on the control of gene expression of the carcinoembryonic antigen family.Cancer Res. 49, 847–852.PubMedGoogle Scholar
  464. 461.
    Cournoyer, D., Beauchemin, N., Boucher, D., Benchimol, S., Fuks, A., and Stanners, C. P. (1988) Transcription of genese of the carcinoembryonic antigen family in malignant and nonmalignant human tissues.Cancer Res. 48, 3153–3157.PubMedGoogle Scholar
  465. 462.
    Zimmerman, W., Weber, B., Ortlieb, B., Rudert, F., Schempp, W., Fiebig, H.-H., Shibely, J. E., von Kliest, S., and Thompson, J. A. (1988) Chromosomal localization of the carcinoembryonic antigen gene family and differential expression in various tumors.Cancer Res. 48, 2550–2554.Google Scholar
  466. 463.
    Oikawa, S., Nakazato, H., and Kosaki, G. (1987) Primary structure of human carcinoembryonic antigen (CAE) deduced from cDNA sequence.Biochem. Biophys. Res. Comm. 142, 511–518.PubMedCrossRefGoogle Scholar
  467. 464.
    Beauchemin, N., Benchimol, S., Cournoyer, D., Fuks, A., and Stanners, C. P. (1987) Isolation and characterization of full-length functional cDNA clones for human carcinoembryonic antigen.Mol. Cell Biol. 7, 3221–3230.PubMedGoogle Scholar
  468. 465.
    Fritsche, R. and Mach, J. P. (1987) Isolation and characterization of carcinoembryonic antigen (CEA) extract from normal human colon mucosa.Immunochem. 14, 119–127.CrossRefGoogle Scholar
  469. 466.
    von Kleist, S., Winkler, J., Migule, I., and Bohm, M. (1986) Expression of CEA in embryonal tissues of the 3 germ layers during 1st trimester of gestation.Tumor Biol. 6, 331.Google Scholar
  470. 467.
    Benchimol, S., Fuks, A., Jothy, S., Beauchemin, N., Shirota, K., and Stanners, C. P. (1989) Carcinoembryonic antigen, a human tumour marker, functions as an intercellular adhesion molecule.Cell 57, 327–334.PubMedCrossRefGoogle Scholar
  471. 468.
    Jothy, S., Brazinsky, S. A., Haggarthy, A., Krantz, M., Cheung, M., and Fuks, A. (1986) Characterization of monoclonal antibodies to carcinoembryonic antigen with increased tumor specificity.Lab. Invest. 54, 108–117.PubMedGoogle Scholar
  472. 469.
    Zhou, H., Fuks, A., and Stanners, C. P. (1990) Specificity of intercellular adhesion mediated by various members of the immunoglobulin supergene family.Cell Growth and Differ. 1, 209–216.Google Scholar
  473. 470.
    Miura, M., Asou, H., Kobayashi, M., and Uyemura, K. (1992) Functional expression of a full-length cDNA coding for rat neural cell adhesion molecule L1 mediates homophilic intercellular adhesion and migration of cerebellar neurons.J. Biol. Chem. 267, 10,752–10,758.Google Scholar
  474. 471.
    Brackenbury, R., Greenberg, M. E., and Edelman, M. (1984) Phenotypic changes and loss of NCAM-mediated adhesion in transformed embryonic chicken retinal cells.J. Cell Biol. 99, 1944–1954.PubMedCrossRefGoogle Scholar
  475. 472.
    Figarello-Branger, D. F., Durbec, P. L., and Rougon, G. N. (1990) Differential spectrum of expression of neural cell adhesion molecule isoforms and L1 adhesion molecules on human neuroectodermal tumors.Cancer Res. 50, 6363–6370.Google Scholar
  476. 473.
    Moolenaar, C. E. C. K., Muller, E. J., Schol, D. J., Figdor, C. G., Bock, E., Bitter-Suermann, D., and Michalides, R. J. A. M. (1990) Expression of neural cell adhesion molecule-related sialoglycoprotein in small cell lung cancer and neuroblastoma cell lines H69 and CHP212.Cancer Res. 50, 1102–1106.PubMedGoogle Scholar
  477. 474.
    Jin, L., Hemperly, J. J., and Lloyd, R. V. (1991) Expression of neural cell adhesion molecule in normal and neoplastic human neuroendocrine tissues.Am. J. Pathol. 138, 961–969.PubMedGoogle Scholar
  478. 475.
    Doyle, L. A., Borges, M., Hussain, A., Elias, A., and Tomiyasu, T. (1990) An adherent subline of a unique small-cell lung cancer cell line downregulates antigens of the neural cell adhesion molecule.J. Clin. Invest. 86, 1848–1854.PubMedGoogle Scholar
  479. 476.
    Acheson, A., Sunshine, J. L., and Rutishauser, U. (1991) NCAM polysialic acid can regulate both cell-cell and cell-substrate interactions.J. Cell Biol. 114, 143–153.PubMedCrossRefGoogle Scholar
  480. 477.
    Aoki, J., Umeda, M., and Takio, K. (1991) Neural cell adhesion molecule mediated contact-dependent inhibition of growth of near-diploid mouse fibroblast cell line m5S/1M.J. Cell Biol. 115, 1751–1761.PubMedCrossRefGoogle Scholar
  481. 478.
    Marlin, S. D. and Springer, T. A. (1987) Purified intercellular adhesion molecule-1 (ICAM-1) is a ligand for lymphocyte function antigen 1 (LFA-1).Cell 51, 813–819.PubMedCrossRefGoogle Scholar
  482. 479.
    Dustin, M. L., Staunton, D. E., and Springer, T. A. (1988) Supergene families meet in the immune system.Immunol. Today 9, 213–216.PubMedCrossRefGoogle Scholar
  483. 480.
    Dustin, M. L., Rothlein, R., Bhan, A. K., Dinarello, C. A., and Springer, T. A. (1986) Induction by IL 1 and interferon-gamma: tissue distribution, biochemistry, and function of a natural adherence molecule (ICAM-1).J. Immunol. 137, 245–254.PubMedGoogle Scholar
  484. 481.
    Diamond, M. S., Staunton, D. E., and deFougerolles, A. R. (1990) ICAM-1 (CD54) a counter-receptor for Mac-1 (CD11b/CD18).J. Cell Biol. 111, 3129–3139.PubMedCrossRefGoogle Scholar
  485. 482.
    Staunton, D. E., Dustin, M. L., Erickson, H. P., and Springer, T. A. (1990) The arrangement of the immunoglobulin-like domains of ICAM-1 and the binding sites for LFA-1 and rhinovirus,Cell 61, 243–254.PubMedCrossRefGoogle Scholar
  486. 483.
    Smith, C. W., Kishimoto, T. K., Abbass, O., Hughes, B., Rothlein, R., McIntire, L. V., Butcher, E., and Anderson, D. C. (1991) Chemotactic factors regulate lectin adhesion molecule 1 (LECAM 1)-dependent neutrophil adhesion to cytokine-stimulated endothelial cells in vitro.J. Clin. Invest. 87, 609–618.PubMedGoogle Scholar
  487. 484.
    Ebisawa, M., Bochner, B. S., Georas, S. N., and Schleimer, R. P. (1992) Eosinophil transendothelial migration induced by cytokines.J. Immunol. 149, 4021–4028.PubMedGoogle Scholar
  488. 485.
    Caughman, S. W., Lian-Jie, L., and Degitz, K. (1990) Characterization and functional analysis of interferon-gamma-induced intercellular adhesion moleucle-1 expression in human keratinocytes and A431 cells.J. Invest. Dermatol. 94, 22S-26S.PubMedCrossRefGoogle Scholar
  489. 486.
    Maio, M., Gulwani, B., Langer, J. A., Kerbel, R. S., Duigou, G. J., Fisher, P. B., and Ferone, S. (1989) Modulation by interferons of HLA antigen, high-molecular-weight melanoma associated antigen, and intercellular adhesion molecule 1 expression by cultured melanoma cells with different metastatic potential.Cancer Res. 49, 2980–2987.PubMedGoogle Scholar
  490. 487.
    Natali, P., Nicotra, M. R., Cavaliere, R., Bigotti, A., Romano, G., Temponi, M., and Ferrone, S. (1990) Differential expression of intercellular adhesion molecule 1 in primary and metastatic melanoma lesions.Cancer Res. 50, 1271–1278.PubMedGoogle Scholar
  491. 488.
    Tsujisaki, M., Imai, K., Hirata, H., Hanzawa, Y., Masuya, J., Sugiyama, T., Matsui, M., Hinoda, Y., and Yachi, A. (1991) Detection of circulating intercellular adhesion molecule-1 antigen in malignant diseases.Clin. Exp. Immunol. 85, 3–8.PubMedCrossRefGoogle Scholar
  492. 489.
    Altomonte, M., Colizzi, F., Esposito, G., and Maio, M. (1992) Circulating intercellular adhesion molecule 1 as a marker of disease progression in cutaneous melanoma.Lancet 327, 959.Google Scholar
  493. 490.
    Osborn, L., Hession, C., Tizard, R., Vassallo, C., Luhowskyj, S., Chi-Rosso, G., and Lobb, R. (1989) Direct expression cloning of vascular cell adhesion molecule 1, a cytokine-induced endothelial protein that binds to lymphocytes.Cell 59, 1203–1211.PubMedCrossRefGoogle Scholar
  494. 491.
    Dobrina, A., Menegazzi, R., Carlos, T. M., Nardon, E., Cramer, R., Zacchi, T., Harlan, J. M., and Patriarca, P. (1991) Mechanisms of eosinophil adherence to cultured vascular endothelial cells.J. Clin. Invest. 88, 20–26.PubMedCrossRefGoogle Scholar
  495. 492.
    Martin-Padura, I., Mortarini, R., Lauri, D., Bernasconi, S., Sanchez-Madrid, F., Parmiani, G., Mantovani, A., Anichini, A., and Dejana, E. (1991) Heterogeneity in human melanoma cell adhesion to cytokine activated endothelial cells correlates with VLA-4 expression.Cancer Res. 51, 2239–2241.PubMedGoogle Scholar
  496. 493.
    Taichman, D. B., Cybulsky, M. I., Djaffar, I., Longenecker, M., Teixido, J., Rice, G. E., Aruffo, A., and Bevilacqua, M. P. (1991) Tumour cell surface α4β1 integrin mediates adhesion to vascular endothelium: demonstration of an interaction with the N-terminal domains of INCAM-110/VCAM-1.Cell Regul. 2, 347–355.PubMedGoogle Scholar
  497. 494.
    Mattila, P., Majuri, M.-L., and Renkonen, R. (1992) VLA-4 integrin on sarcoma cell lines recognizes endothelial VCAM-1, differential regulation of the VLA-4 avidity on various sarcoma cell lines.Int. J. Cancer 52, 918–923.PubMedCrossRefGoogle Scholar
  498. 495.
    Chan, B. M., Wong, J. G., Rao, A., and Hemler, M. E. (1991) T cell receptor-dependent, antigen-specific stimulation of a murine T cell clone induces a transient, VLA protein-mediated binding to extracellular matrix.J. Immunol. 147, 398–404.PubMedGoogle Scholar
  499. 496.
    Cybulski, M. I., Fries, J. W. U., Williams, A. J., Sultan, P., Davis, V. M., Gimbrone, M. A., Jr., and Collins, T. (1991) Alternative splicing of human VCAM-1 in activated vascular endothelium.Am. J. Pathol. 138, 815–820.Google Scholar
  500. 497.
    van Dinther-Janssen, A. C. H. M., Horst, E., Koopman, G., Newman, W., Scheper, R. J., and Meijer, C. J. L. M. (1991) The VLA-4/VCAM-1 pathway is involved in lymphocyte adhesion to endothelium in rheumatoid synovium.J. Immunol. 147, 4207–4210.PubMedGoogle Scholar
  501. 498.
    Wilkenson, L. S., Edwards, J. C. W., Poston, R. N., and Haskard, D. O. (1993) Expression of vascular cell adhesion molecule-1 in normal and inflamed synovium.Lab. Invest. 68, 82–88.Google Scholar
  502. 499.
    Takeichi, M. (1990) Cadherins: a molecular family important in selective cell-cell adhesion.Ann. Rev. Biochem. 59, 237–252.PubMedCrossRefGoogle Scholar
  503. 500.
    Gallin, W. J., Sorkin, B. C., Edelman, G. M., and Cunningham, B. A. (1987) Sequence analysis of a cDNA clone encoding the liver cell adhesion molecule, L-CAM.Proc. Natl. Acad. Sci. USA 84, 2808–2812.PubMedCrossRefGoogle Scholar
  504. 501.
    Nose, A., Nagafuchi, A., and Takeichi, M. (1987) Isolation of placental cadherin cDNA: identification of a novel gene family of cell-cell adhesion molecules.EMBO J. 6, 3655–3661.PubMedGoogle Scholar
  505. 502.
    Miyatani, S., Shimamura, K., Hatta, M., Nagafuchi, A., Nose, A., Matusunaga, M., Hatta, K., and Takeichi, M. (1989) Neural cadherin: role in selective cell-cell adhesion.Science 245, 631–635.PubMedCrossRefGoogle Scholar
  506. 503.
    Hatta, K., Nose, A., Nagafuchi, A., and Takeichi, M. (1988) Cloning and expression of cDNA encoding a neural calcium-dependent cell adhesion molecule: its identity in the cadherin gene family.J. Cell Biol. 106, 873–881.PubMedCrossRefGoogle Scholar
  507. 504.
    Salomon, D., Ayalon, O., Patel-King, R., Hynes, R. O., and Geiger, B. (1992) Extrajunctional distribution of N-cadherin in cultured human endothelial cells.J. Cell Sci. 102, 7–17.PubMedGoogle Scholar
  508. 505.
    Hirano, S., Kimoto, N., Shimoyama, Y., Hirohashi, S., and Takeichi, M. (1992) Identification of a neural α-catenin as a key regulator of cadherin function and multicellular organization.Cell 70, 293–301.PubMedCrossRefGoogle Scholar
  509. 506.
    Nose, A. and Takeichi, M. (1986) A novel cadherin cell adhesion molecule: its expression patterns associated with implantation and organogenesis of mouse embryos.J. Cell Biol. 103, 2649–2658.PubMedCrossRefGoogle Scholar
  510. 507.
    Behrens, J., Marcel, M. M., van Roy, F. M., and Birchmeirer, W. (1989) Dissecting tumour cell invasion: epithelial cells acquire invasive properties after the loss of uvomorulin-mediated cell-cell adhesion.J. Cell Biol. 108, 2435–2447.PubMedCrossRefGoogle Scholar
  511. 508.
    Frixen, U. H., Behrens, J., Sachs, M., Eberle, G., Voss, B., Warda, A., Lochner, D., and Birchmeier, W. (1991) E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells.J. Cell Biol. 113, 173–185.PubMedCrossRefGoogle Scholar
  512. 509.
    Navarro, P., Gomez, M., Pizarro, A., Gamallo, C., Quintanilla, M., and Cano, A. (1991) A role for the E-cadherin-mediated cell-cell adhesion molecule during tumor progression of mouse epidermal carcinogenesis.J. Cell Biol. 115, 517–533.PubMedCrossRefGoogle Scholar
  513. 510.
    Sommers, C. L., Thompson, E. W., Torri, J. A., Kemler, R., Gelmann, E. P., and Byers, S. W. (1991) Cell adhesion molecule uvomorulin expression in human breast cancer cell lines: relationship to morphology and invasive capacities.Cell Growth and Differ. 2, 365–372.Google Scholar
  514. 511.
    Shimoyama, Y., Hirohashi, S., Hirano, S., Noguchi, M., Shimosato, Y., Takeichi, M., and Abe, O. (1989) Cadherin cell-adhesion molecules in human epithelial tissues and carcinomas.Cancer Res. 49, 2128–2133.PubMedGoogle Scholar
  515. 512.
    Shiozaki, H., Tahara, H., and Oka, H. (1991) Expression of immunoreactive E-cadherin adhesion molecules in human cancers.Am. J. Pathol. 139, 17–23.PubMedGoogle Scholar
  516. 513.
    Schipper, J. H., Frixen, U. H., Behrens, J., Unger, A., Jahnke, K., and Birchmeier, W. (1991) E-cadherin expression in squamous cell carcinomas of head and neck: inverse correlation with tumour dedifferentiation and lymph node metastasis.Cancer Res. 51, 6328–6337.PubMedGoogle Scholar
  517. 514.
    Cobbold, S., Hale, G., and Waldman, H. (1987) Non-lineage, LFA-1 family and leukocyte common antigens: new and previously defined clusters, inWhite Cell Differentiation Antigens. (Michael, A.J., ed.), Oxford University Press, Oxford, England, p. 788.Google Scholar
  518. 515.
    Denning, S. M., Le, P. T., Singer, H., and Haynes, B. F. (1990) Antibodies against the CD44 p80, lymphocyte homing receptor molecule augment human peripheral blood T cell activation,J. Immunol. 144, 7–15.PubMedGoogle Scholar
  519. 516.
    Heider, K.-H., Hoffmann, M., Hors, E., van den Berg, F., Ponta, H., Herrlich, P., and Pals, S. T. (1993) A human homologue of the rat metastasis-associated variant of CD44 is expressed in colorectal carcinomas and adenomatous polyps.J. Cell Biol. 120, 227–233.PubMedCrossRefGoogle Scholar
  520. 517.
    Kishimoto, T. K. (1989) The leukocyte integrins.Adv. Immunol. 46, 149.PubMedGoogle Scholar
  521. 518.
    Carlos, T., Kovach, N., Schwartz, B., Rosa, M., Newman, B., Wayner, E., Benjamin, C., Osborn, L., Lobb, R., and Harlan, J. (1991) Human monocytes bind to cytokine-induced adhesive ligands on cultured human endothelial cells: endothelial-leukocyte adhesion molecule-1 and vascular cell adhesion molecule-1.Blood 77, 2266–2271.PubMedGoogle Scholar
  522. 519.
    Shimizu, Y., Newman, W., Gopal, T. V., Horgan, K. J., Graber, N., Beall, L. D., van Seventer, G. A., and Shaw, S. (1991) Four molecular pathways of T cell adhesion to endothelial cells: roles of LFA-1, VCAM-1, and ELAM-1 and changes in pathway hierarchy under different activation conditions.J. Cell Biol. 113, 1203–1212.PubMedCrossRefGoogle Scholar
  523. 520.
    Yednock, T. A. and Rosen, S. D. (1989) Lymphocyte homing.Adv. Immunol. 44, 313–378.PubMedGoogle Scholar
  524. 521.
    Lasky, L. A., Singer, M. S., Yednock, T. A., Dowbenki, D., Fennie, C., Rodriguez, H., Nguyen, T., Stachel, S., and Rosen, S. D. (1989) Cloning of a lymphocyte homing receptor reveals a lectin domain.Cell 56, 1054,1055.CrossRefGoogle Scholar
  525. 522.
    Holzmann, B. and Weissman, I. L. (1989) Peyer's patch-specific lymphocyte homing receptors consist of a VLA-4-like α chain associated with either of two integrin β chains, one of which is novel.EMBO J. 8, 1735–1741.PubMedGoogle Scholar
  526. 523.
    Holzmann, B., McIntyre, B. W., and Weissman, I. L. (1989) Identification of a murine peyer's patch-specific lymphocyte homing receptor as an integrin molecule with an α chain homologous to human VLA-4α.Cell 56, 37–46.PubMedCrossRefGoogle Scholar
  527. 524.
    Woodruff, J. J., Clarke, L. M., and Chin, Y. H. (1987) Specific cell-adhesion mechanisms determining migration pathways of recirculating lymphocytes.Ann. Rev. Immunol. 5, 201–220.CrossRefGoogle Scholar
  528. 525.
    Streeter, P. R., Berg, E. L., Rouse, B. T., Bargatze, R. F., and Butcher, E. C. (1988) A tissue-specific cell molecule involved in lymphocyte homing.Nature 241, 769.Google Scholar
  529. 526.
    Berg, E. L., Robinson, M. K., Mansson, O., Butcher, E. C., and Magnani, J. L. (1991) A carbohydrate domain common to both sialyl Lea and sialyl Lex is recognized by the endothelial cell leukocyte adhesion molecule ELAM-1.J. Biol. Chem. 266, 14,869–14,872.Google Scholar
  530. 527.
    Goldstein, L. A., Zhou, D. F., Picker, L. J., Minty, C. N., Bargatze, R. F., Ding, J. F., and Butcher, E. C. (1989) A human lymphocyte homing receptor, the Hermes antigen, is related to cartilage proteoglycan core and link proteins.Cell 56, 1063–1072.PubMedCrossRefGoogle Scholar
  531. 528.
    Jalkanen, S., Baratze, R. F., de Los Toyos, J., and Butcher, E. C. (1987) Lymphocyte recognition of high endothelium: antibodies to distinct epitopes of an 85–95 kD-glycoprotein antigen differentially inhibit lymphocyte binding to lymph node, mucosal or synovial endothelial cells.J Cell Biol. 105, 983–990.PubMedCrossRefGoogle Scholar
  532. 529.
    Picker, L. J., Nakache, M., and Butcher, E. C. (1989) Monoclonal antibodies to human lymphocyte homing receptors define a novel class of adhesion molecules on diverse cell types.J. Cell Biol. 109, 927–937.PubMedCrossRefGoogle Scholar
  533. 530.
    Pals, S. T., den Otter, A., Miedema, F., Kabel, P., Keizer, G. D., Scheper, R. J., and Meijer, C. J. (1988) Evidence that leukocyte function-associated antigen 1 is involved in recirculation and homing of human lymphocytes via high endothelial venules.J. Immunol. 140, 1851–1853.PubMedGoogle Scholar
  534. 531.
    Hamman, A., Jablonski-Westrich, D., Duijvestijn, A., Butcher, E. C., Baisch, H., Harder, R., and Thiele, H. G. (1988) Evidence for an accessory role of LFA-1 in lymphocte-high endothelium interaction during homing.J. Immunol. 140, 693–699.Google Scholar
  535. 532.
    von Andrian, U. H., Chambers, J. D., McEvoy, L. M., Bargatze, R. F., Arfors, K.-E., and Butcher, E. C. (1991) Two-step model of leukocyte-endothelial cell interactions in inflammation: distinct roles for LECAM-1 and the leukocyte β2 integrinsin vivo.Proc. Natl. Acad. Sci. USA,88, 7538–7542.CrossRefGoogle Scholar
  536. 533.
    Ley, K., Gaehhtgens, P., Fennie, C., Singer, M. S., Lasky, L. A., and Rosen, S. D. (1991) Lectin-like cell adhesion molecule 1 mediates leukocyte rolling in mesenteric venulesin vivo.Blood 77, 2553–2555PubMedGoogle Scholar
  537. 534.
    Hogg, N. (1992) Roll, roll, roll your leukocyte gently down the vein ...Immunol. Today 13, 113–115.PubMedCrossRefGoogle Scholar
  538. 535.
    Arfors, K. E., Lundberg, C. L., Lindbom, L., Lundberg, K., Beatty, P. G., and Harlan, J. M. (1987) A monoclonal antibody to the membrane glycoprotein complex CD18 inhibits polymorphonuclear leukocyte accumulation and plasma leakage in vivo.Blood 69, 338–340.PubMedGoogle Scholar
  539. 536.
    Lawrence, M. B., Smith, C. W., Eskin, S. G., and McIntire, L. V. (1990) Effect of venous shear stress on CD18-mediated neutrophil adhesion to cultured endothelium.Blood 75, 227–237.PubMedGoogle Scholar
  540. 537.
    lawrence, M. B. and Springer, T. A. (1991) Leukocytes roll on a selectin at physiologic flow rates: distribution from and prerequisite for adhesion through integrins.Cell 65, 859–873.PubMedCrossRefGoogle Scholar
  541. 538.
    Freedman, A. S., Munro, J. M., Rice, G. E., Bevilacqua, M. P., Morimoto, C., McIntyre, B. W., Rhynhart, K., Pober, J. S., and Nadler, L. M. (1990) Adhesion of human B cells to germinal centers in vitro involves VLA-4 and INCAM-110.Science 249, 1030–1034.PubMedCrossRefGoogle Scholar
  542. 539.
    Munro, J. M., Lo, S. K., Corless, C., Robertson, M. J., Lee, N. C., Barnhill, R. L., Weinberg, D. S., and Bevilacqua, M. P. (1992) Expression of sialyllewisx, an E-selectin ligand, in inflammation, immune processes and lymphoid tissue.Am. J. Pathol. 141, 1397–1498.PubMedGoogle Scholar
  543. 540.
    Fougerolles, A. R., Staker, S. A., Schwarting, R., and Springer, R. A. (1991) Characterization of ICAM-2 and evidence for a third counter-receptor for LFA-1.J. Exp. Med. 174, 253–267.PubMedCrossRefGoogle Scholar
  544. 541.
    Nortamo, P., Li, R., Renkonen, R., Timone, T., Priesto, J., Patarroyo, M., and Gahmberg, C. G. (1991) The expression of human intercellular adhesion molecule-2 is refractory to inflammatoty cytokines.Eur. J. Immunol. 21, 2629–2632.PubMedCrossRefGoogle Scholar
  545. 542.
    Haskard, D., Cavender, D., Beatty, P., Springer, T., and Ziff, M. (1986) T lymphocyte adhesion to endothelial cells: mechanisms demonstrated by anti-LFA-1 monoclonal antibodies.J. Immunol. 137, 2901–2906.PubMedGoogle Scholar
  546. 543.
    Oppenheimer-Marks, N., Davis, L. S., and Lipsky, P. E. (1990) Human T lymphocyte adhesion to endothelial cells and transendothelial migration.J. Immunol. 145, 140–148.PubMedGoogle Scholar
  547. 544.
    Issekutz, T. B. (1992) Lymphocyte homing to sites of inflammation.Curr. Opinion Immunol. 4, 287–293.CrossRefGoogle Scholar
  548. 545.
    Michl, J., Qiu, Q.-Y., and Kuerer, H. M. (1991) Homing receptors and addressins.Curr. Opinion Immunol. 3, 373–382.CrossRefGoogle Scholar
  549. 546.
    Thornhill, M. H., Willicome, S. M., Mahiouz, D. L., Lanchbury, J. S. S., Kyan-Aung, U., and Haskard, D. O. (1991) Tumor necrosis factor combines with IL-1 or IFN-gamma to selectively enhance endothelial adhesiveness for T cells.J. Immunol. 146, 592–598.PubMedGoogle Scholar
  550. 547.
    Chin, Y.-H., Cai, J.-P., and Johnson, K. (1990) Lymphocyte adhesion to cultured Peyer's patch high endothelial venule cells is mediated by organspecific homing receptors and can be regulated by cytokines.J. Immunol. 145, 3669–3677.PubMedGoogle Scholar
  551. 548.
    Larsen, E., Celi, A., Gilbert, G. E., Furie, B. C., Erban, J. K., Bonfanti, R., Wagner, D. D., and Furie, B. (1989) PADGEM protein: a receptor that mediates the interaction of activated platelets with neutrophils and monocytes.Cell 59, 305–312.PubMedCrossRefGoogle Scholar
  552. 549.
    McEver, R. (1991) Selectins: novel receptors that mediate leukocyte adhesion during inflammation.Thromb. Haemost. 65, 223–228.PubMedGoogle Scholar
  553. 550.
    Dennis, J. W., Laferte, S., Yagel, S., and Breitman, M. L. (1989) Asparaginelinked oligosaccharides associated with metastatic cancer.Cancer Cells 1, 87–92.PubMedGoogle Scholar
  554. 551.
    Shestowski, W., Fallavollita, L., and Brodt, P. (1990) A monoclonal antibody to Lewis Lung carcinoma variant H-59 identifies a plasma membrane protein with apparent relevance to lymph node adhesion and metastasis.Cancer Res. 50, 1958–1953.Google Scholar
  555. 552.
    Brodt, P., Fallavollita, L., Sawka, R. J., Shibata, P., Nip, J., Kim, U., and Shibata, H. (1990) Tumour cell adhesion to frozen lymph node sections- a correlate of lymphatic metastasis in breast carcinoma models of human and rat origin.Breast Cancer Res. and Treatments 17, 109–120.CrossRefGoogle Scholar
  556. 553.
    Vollmers, H. P. and Birchmeier, W. (1983) Monoclonal antibodies inhibit the adhesion of mouse B16 melanoma cellsin vitro and block lung metastasisin vivo.Proc. Natl. Acad. Sci. USA 80, 3729–3733.PubMedCrossRefGoogle Scholar
  557. 554.
    Tressler, R. J. and Nicolson, G. L. (1992) Butanol-extractable and detergent-solubilized cell surface components from murine large cell lymphoma cells associated with adhesion to organ microvessel endothelial cells.J. Cell. Biochem. 48, 162–171.PubMedCrossRefGoogle Scholar
  558. 555.
    Reading, C. L., Belloni, P. N., and Nicolson, G. L. (1980) Selection and in vivo properties of lectin-attachment variants of malignant murine lymphosarcoma cell lines.J. Natl. Cancer Inst. 64, 1241–1249.PubMedGoogle Scholar
  559. 556.
    Reading, C. L. and Nicolson, G. L. (1987) Selection of tumour cell metastatic variants by differential adhesion to immobilized lectins, inCell Separation: Methods and Selected Applications, vol. 5 (Pretlow, T. G., ed.), Academic, New York, pp. 75–87.Google Scholar
  560. 557.
    Irimura, M., Gonzalez, R., and Nicolson, G. L. (1981) Effects of tunicamycin on B16 metastatic melanoma cell surface glycoproteins and blood-borne arrest and survival properties.Cancer Res. 41, 3411–3418.PubMedGoogle Scholar
  561. 558.
    Bresalier, R. S., Rockwell, R. W., Dahiiya, R., Duh, Q.-Y., and Kim, Y. S. (1990) Cell surface sialoprotien alterations in metastatic murine colon cancer cell lines selected in an animal model for colon cancer metastasis.Cancer Res. 50, 1299–1307.PubMedGoogle Scholar
  562. 559.
    Meromsky, L., Lotan, R., and Raz, A. (1986) Implications of endogenous tumour cell surface lectins as mediators of cellular interactions and lung colonization.Cancer Res. 46, 5270–5275.PubMedGoogle Scholar
  563. 560.
    Belloni, P. N., Carney, D. H., and Nicolson, G. L. (1992) Organ-derived microvessel endothelialo cells exhibit differential responsiveness to thrombin and other growth factors.Microvasc. Res. 43, 20–45.PubMedCrossRefGoogle Scholar
  564. 561.
    Auerbach, R., Alby, L., Morissey, L., Tu, M., and Joseph, J. (1985) Expresion of organ-specific antigens on capillary endothelial cells.Microvasc. Res. 29, 401–406.PubMedCrossRefGoogle Scholar
  565. 562.
    van den Brenk, H. A. S., Stone, M., Kelly, H., Orton, C., and Sharpington, C. (1974) Promotion of growth of tumour cells in acutely inflamed tissues.Br. J. Cancer 30, 246–259.Google Scholar
  566. 563.
    Orr, F. W., Mokashi, S., and Delikatny, J. (1982) Generation of a complement-derived chemotactic factor for tumour cells in experimentally induced peritoneal exudates and its effect on the local metastasis of circulating tumour cells.Am. J. Pathol. 108, 112–118.PubMedGoogle Scholar
  567. 564.
    Orr, F. W., Adamson, I. Y. R., and Young, L. (1985) Pulmonary inflammation generates chemotactic activity for tumour cells and promotes lung metastasis.Am. Rev. Respir. Dis. 131, 607–611.PubMedGoogle Scholar
  568. 565.
    Giavazzi, R., Garofalo, A., Bani, M. R., Abbate, M., Ghezzi, P., Boraschi, D., Mantovani, A., and Dejana, E. (1990) Interleukin-1-induced augmentation of experimental metastases from a human melanoma in nude mice.Cancer Res. 50, 4771–4775.PubMedGoogle Scholar
  569. 566.
    Lauri, D., Bertomeu, M.-C., Orr, F. W., Bastida, E., Sauder, D., and Buchanan, M. R. (1990) Interleukin-1 increases tumour cell adhesion to endothelial cells through an RGD dependent mechanism:in vitro andin vivo studies.Clin. Exp. Metastasis 8, 27–32.PubMedCrossRefGoogle Scholar
  570. 567.
    Arguello, F., Baggs, R. B., Graves, B. T., Harwell, S. E., Cohen, H. J., and Frantz, C. N. (1992) Effect of IL-1 on experimental bone/bone-marrow metastases.Int. J. Cancer 52, 802–807.PubMedCrossRefGoogle Scholar
  571. 568.
    Bani, M. R., Garofalo, A., Scanziani, E., and Giavazzi, R. (1991) Effect of interleukin-1 on metastasis formation in different tumour systems.J. Natl. Cancer Inst. 83, 119–123.PubMedCrossRefGoogle Scholar
  572. 569.
    Orr, F. W. and Warner, D. J. A. (1990) Effects of systemic complement activation and neutrophil-mediated pulmonary injury on the retention and metastasis of circulating cancer cells in mouse lungs.Lab. Invest. 62, 331–338.PubMedGoogle Scholar
  573. 570.
    Mooradian, D. L., McCarthy, J. B., Komanduri, K. V., and Furcht, L. T. (1992) Effect of transforming growth factor-β1 on human pulmonary adenocarcinoma cell adhesion, motility, and invasionin vitro.J. Natl. Inst. 84, 523–527.CrossRefGoogle Scholar
  574. 571.
    Lauri, D., Bertomeu, M.-C., Orr, F. W., Bastida, E., Sauder, D. N., and Buchanan, M. R. (1989) Differential effects of interleukin-1 and formyl-methionylleucylphenylalanine on chemotacis and human endothelium adhesivity for A549 tumour cells.Lab. Invest. 60, 161–164.PubMedGoogle Scholar
  575. 572.
    Dejana, E., Bertocchi, F., Bortolami, M. C., Regonesi, A., Tonta, A., Breviario, F., and Giavazzi, R. (1988) Interleukin-1 promotes tumour cell adhesion to cultured human endothelial cells.J. Clin. Invest. 82, 1466–1470.PubMedGoogle Scholar
  576. 573.
    Vidal, M. J., Zocchi, M. R., Poggi, A., Pellegatta, F., and Chierchia, S. L. (1992) Involvement of nitric oxide in tumour cell adhesion to cytokine-activated endothelial cells.J. Cardiovasc. Pharmacol. 20, S155-S159.PubMedGoogle Scholar
  577. 574.
    Rice, G. E., Gimbrone, M. A., Jr., and Bevilacqua, M. P. (1988) Tumour cell-endothelial interactions. Increased adhesion of human melanoma cells to activated vascular endothelium.Am. J. Pathol. 133, 204–210.PubMedGoogle Scholar
  578. 575.
    Taichman, D. B., Cybulsky, M. I., Djaffar, I., Longenecker, M., Teixido, J., Rice, G. E., Aruffo, A., and Bevilacqua, M. P. (1991) Tumour cell surface α4β1 integrin mediates adhesion to vascular endothelium: demonstration of an interaction with the N-terminal domains of INCAM-110/VCAM-1Cell Regul. 2, 347–354.PubMedGoogle Scholar
  579. 576.
    Lafrenie, R. M., Podor, T. J., Buchanan, M. R., and Orr, F. W. (1992) Upregulated biosynthesis of endothelial vitronectin receptor enhances cancer cell adhesion.Cancer Res. 52, 2202–2208.PubMedGoogle Scholar
  580. 577.
    Buchanan, M. R., Orr, F. W., Podor, T. J., and Lafrenie, R. M. (1992) The relative roles of ELAM-1, VCAM-1 and vitronectin receptor in cancer cell adhesion to interleukin-1-treated endothelial cells.FASEB J. 6, A1359.Google Scholar
  581. 578.
    Morris, V. L., MacDonald, I. C., Koop, S., Schmidt, E. E., Chambers, A. F., and Groom, A. C. (1992) Early interactions of cancer cells with the microvascularture in mouse liver and muscle during hematogenous metastasis: video microscopic analysis.Clin. Exp. Metastasis 11, 377–390.CrossRefGoogle Scholar
  582. 579.
    De la Harpe, J. and Nathan, C. F. (1985) A semi-automated micro-assay for H2O2 release by human blood monocytes and mouse peritoneal macrophages.J. Immunol. Methods 78, 323–336.PubMedCrossRefGoogle Scholar
  583. 580.
    Juliano, R. L. and Haskill, S. (1993) Signal transduction from the extracellular matrix.J. Cell Biol. 120, 577–585.PubMedCrossRefGoogle Scholar
  584. 581.
    Matsuyama, T., Yamada, A., Kay, J., Yamada, K. M., Akiyama, S. K., Schlossman, S. F., and Morimoto, C. (1989) Activation of CD4 cells by fibronectin and anti-CD3 antibody.J. Exp. Med. 170, 1133–1148.PubMedCrossRefGoogle Scholar
  585. 582.
    Felding-Habermann, B., Mueller, B. M., Romerdahl, C. A., and Cheresh, D. A. (1992) Involvement of integrin αv gene expression in human melanoma tumorigenicity.J. Clin. Invest. 89, 2018–2022.PubMedGoogle Scholar

Copyright information

© Humana Press Inc 1994

Authors and Affiliations

  • Robert M. Lafrenie
    • 1
  • Michael R. Buchanan
    • 1
    • 2
  • F. William Orr
    • 1
  1. 1.Department of PathologyMcMaster UniversityHamilton
  2. 2.Department of SurgeryMcMaster UniversityHamilton

Personalised recommendations