In Vitro

, Volume 12, Issue 3, pp 208–215 | Cite as

Selection and characterization of chinese hamster ovary cells resistant to the cytotoxicity of lectins

  • Pamela Stanley
  • Louis Siminovitch


Chinese hamster ovary (CHO) cells selected in a single step for resistance to the cytotoxicity of the lectin from red kidney beans (PHA) behave as authentic somatic cell mutants. The PHA-resistant (PhaR) phenotype is stable in the absence of selection; its frequency in a sensitive population is increased several-fold by mutagenesis; and it behaves recessively in somatic cell hybrids. The activity of a specific glycosyl transferase which transfers N-acetylglucosamine (GlcNAc) to terminalα-mannose residues is dramatically reduced (⩽5% of the activity detected in wild-type CHO cells) in several independent PhaR clones. These clones also exhibit (a) a decreased ability to bind [125I]-PHA; (b) a marked resistance to the cytotoxicity of wheat germ agglutinin (WGA), Ricin (RIC) andLens culinaris agglutinin (LCA); (c) a 4- to 5-fold increased sensitivity to the cytotoxicity of concanavalin A (Con A); (d) an increased ability to bind125I-Con A; and (e) decreased surface galactose residues—all properties consistent with the specific loss of the GlcNAc transferase activity. The lectins WGA, RIC, LCA and Con A have also been used to select, in a single step, resistant clones from each of two complementary CHO auxotrophic lines. These lectin-resistant clones have been characterized by their ability to survive cytotoxic doses of PHA, Con A, WGA, RIC or LCA, and 4–5 “lectin-resistance” phenotypes have been demonstrated. Complementation data is being sought by somatic cell hybridization. Preliminary results show that two phenotypically-distinct Con AR mutants are complementary in that hybrid cells formed between them exhibit wild-type sensitivity to Con A.

Key words

somatic cell genetics lectins membrane mutants glycosyl transferases complementation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baker, R. M., D. M. Brunette, R. Mankovitz, L. H. Thompson, G. F. Whitmore, L. Siminovitch, and J. E. Till. 1974. Ouabain-resistant mutants of mouse and hamster cells in culture. Cell 1: 9–21.CrossRefGoogle Scholar
  2. 2.
    Ling, V., and L. H. Thompson. 1974. Reduced permeability in CHO cells as a mechanism of resistance to colchicine. J. Cell. Physiol. 83: 103–116.PubMedCrossRefGoogle Scholar
  3. 3.
    Lis, H., and N. Sharon. 1973. The biochemistry of plant lectins. (Phytohemagglutinins). Ann. Rev. Biochem. 42: 541–573.PubMedCrossRefGoogle Scholar
  4. 4.
    Nicolson, G. L. 1974. The interactions of lectins with animal cell surfaces. Int. Rev. Cytol. 39: 89–190.PubMedCrossRefGoogle Scholar
  5. 5.
    Puck, T. T., S. J. Cieciura, and A. Robinson. 1958. Genetics of somatic mammalian cells III. Long-term cultivation of euploid cells from human and animal subjects. J. Exp. Med. 108: 945–956.PubMedCrossRefGoogle Scholar
  6. 6.
    Thompson, L. H., and R. M. Baker. 1973. Isolation of mutants of cultured mammalian cells. In: D. M. Prescott (Ed.),Methods in Cell Biology, Academic Press, Inc., New York, Ch. 7, pp. 209–281.Google Scholar
  7. 7.
    Wright, J. A. 1973. Evidence for pleiotrophic changes in lines of Chinese hamster ovary cells resistant to concanavalin A and phytohemaglutinin-P. J. Cell Biol. 56: 666–675.PubMedCrossRefGoogle Scholar
  8. 8.
    Stanley, P., V. Caillibot, and L. Siminovitch. 1975. Stable alterations at the cell membrane of Chinese hamster ovary cells resistant to the cytotoxicity of phytohemagglutinin. Somatic Cell Genetics 1: 3–26.PubMedCrossRefGoogle Scholar
  9. 9.
    Juliano, R. L., and P. Stanley. 1975. Altered cell surface glycoproteins in phytohemagglutinin-resistant mutants of Chinese hamster ovary cells. Biochim. Biophys. Acta 89: 401–406.Google Scholar
  10. 10.
    Stanley, P., L. Siminovitch, S. Narasimhan, and H. Schachter. 1975. Chinese hamster ovary cells selected for resistance to the cytotoxicity of phytohemagglutinin are deficient in a UDP-N-Acetylglucosamine:Glycoprotein N-acetylglucosaminyl transferase activity. Proc. Natl. Acad. Sci. U.S.A. 72: 3323–3327.PubMedCrossRefGoogle Scholar
  11. 11.
    Luria, S. E., and M. Delbrück. 1943. Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28: 491–511.PubMedGoogle Scholar
  12. 12.
    Lea, D. E., and C. A. Coulson. 1949. The distribution of the numbers of mutants in bacterial populations. J. Genet. 49: 264–285.CrossRefGoogle Scholar
  13. 13.
    Kornfeld, R., and S. Kornfeld. 1970. The structure of a phytohaemagglutinin receptor site from human erythrocytes. J. Biol. Chem. 245: 2536–2545.PubMedGoogle Scholar
  14. 14.
    Toyoshima, S., M. Fukuda, and T. Osawa. 1972. Chemical nature of the receptor site for various phytomitogens. 11: 4000–4005.Google Scholar
  15. 15.
    Kornfeld, S., J. Rogers, and W. Gregory. 1971. The nature of the cell surface receptor site forLens culinaris phytohemagglutinin. J. Biol. Chem. 246: 6581–6586.PubMedGoogle Scholar
  16. 16.
    Kornfeld, R., J. Keller, J. Baenziger, and S. Kornfeld. 1971. The structure of the glycopeptides of human γ G myeloma proteins. J. Biol. Chem. 246: 3259–3268.PubMedGoogle Scholar
  17. 17.
    Schachter, H., I. Jabbal, R. L. Hudgin, L. Pinteric, E. J. McGuire, and S. Roseman. 1970. Intracellular localization of liver sugar nucleotide glycoprotein glycosyltransferases in a Golgi-rich fraction. J. Biol. Chem. 245: 1090–1100.PubMedGoogle Scholar
  18. 18.
    Harris, M. 1971. Mutation rates in cells at different ploidy levels. J. Cell. Physiol. 78: 177–184.PubMedCrossRefGoogle Scholar
  19. 19.
    Chasin, L. A. 1972. Non-linkage of induced mutations in Chinese hamster cells. Nature [New Biol.] 240: 50–51.Google Scholar
  20. 20.
    Ozanne, B., and J. Sambrook. 1971. Isolation of lines of cells resistant to agglutination by concanavalin A from 3T3 cells transformed by SV40. In: L. G. Silvestri (Ed.),The Biology of Oncogenic Viruses, North-Holland Publishing Co., Amsterdam, pp. 248–257.Google Scholar
  21. 21.
    Culp, L. A., and P. H. Black. 1972. Contact-inhibited revertant cell lines isolated from Simian Virus 40-transformed cells III. Concanavalin A-selected revertant cells. J. Virol. 9: 611–620.PubMedGoogle Scholar
  22. 22.
    Guérin, A., B. Prigent, M.-A. Moyne, and A. Paraf. 1972. La différenciation du plasmocytome murin MOPC 173: obtention de variants en culture cellulaire. Bull. Cancer (Paris) 59: 367–378.Google Scholar
  23. 23.
    Wollman, Y., and L. Sachs. 1972. Mapping of sites on the surface membrane of mammalian cells II. Relationship of sites for concanavalin A and an ornithine, leucine polymer. J. Membr. Biol. 10: 1–10.PubMedCrossRefGoogle Scholar
  24. 24.
    Ozanne, B. 1973. Variants of Simian Virus 40-transformed 3T3 cells that are resistant to concanavalin A. J. Virol. 12: 79–80.PubMedGoogle Scholar
  25. 25.
    Gottlieb, C., A. M. Skinner, and S. Kornfeld. 1974. Isolation of a clone of Chinese hamster ovary cells deficient in plant lectin-binding sites. Proc. Natl. Acad. Sci. U.S.A. 71: 1078–1082.PubMedCrossRefGoogle Scholar
  26. 26.
    Hyman, R., M. Lacorbière, S. Stavarek, and G. Nicolson. 1974. Derivation of lymphoma variants with reduced sensitivity to plant lectins. J. Natl. Cancer Inst. 52: 963–969.PubMedGoogle Scholar
  27. 27.
    Gottlieb, C., J. Baenziger, and S. Kornfeld. 1975. Deficient uridine diphosphate-N-acetyl-glucosamine glycoprotein N-acetylglucosaminyl-transferase activity in a clone of Chinese hamster ovary cells with altered surface glycoproteins. J. Biol. Chem. 250: 3303–3309.PubMedGoogle Scholar
  28. 28.
    Meager, A., A. Ungkitchanukit, and R. C. Hughes. 1975. Isolation and properties of baby hamster kidney cell variants resistant to the toxicity of ricin. Effects on the cell surface glycoprotein structure. (Submitted for publication.)Google Scholar

Copyright information

© Tissue Culture Association 1976

Authors and Affiliations

  • Pamela Stanley
    • 1
  • Louis Siminovitch
    • 1
  1. 1.Department of Medical GeneticsUniversity of TorontoTorontoCanada

Personalised recommendations