In Vitro - Plant

, Volume 18, Issue 8, pp 727–738 | Cite as

Binding of epithelial cells to lectin-coated surfaces

  • Stephanie Gordon Phillips
  • Shiu-Lan Lui
  • David M. Phillips


Epithelial cells may relate to their basement membrane substrates via lectin-like interactions. In a model system for study of this type of interaction, lectin-coated bacteriological plastic petri dishes were presented as substrates for epithelial cell adhesion. Of 21 lectins tested by mixed agglutination against two epithelial cell types, Madin-Darby canine kidney (MDCK), and human embryonic kidney cells (HEK), nine gave less than 5% rosettes and 12 gave 5 to 50% rosettes. Wheat germ agglutinin (WGA) andGeodia cydonium lectin gave the highest percentage of rosettes. Wheat germ agglutinin was readily adsorbed to plastic surfaces and maintained specificity in binding interactions. Both MDCK and HEK cells attached as well to WGA coated petri dishes as to conventional tissue culture dishes. Furthermore, both spread over the lectin-coated surfaces. The MDCK cells grew to confluence and could be subcultured and maintained indefinitely on such surfaces, although WGA in solution was toxic to the cells in concentrations as low as 0.1 to 1.0 µg/ml. Cell attachment to WGA coated dishes was blocked by cycloheximide only if the cells had been preincubated with the inhibitor for several hours. Cell attachment was not inhibited by pretreatment of cells with neuraminidase. Precoating cells with WGA blocked binding to both WGA-coated surfaces and untreated tissue culture dishes. Cells attached to WGA-coated dishes could not be readily dislodged by trypsin-EDTA for the first 2 h after subculture. By 4 h, attachment was again trypsin sensitive, suggesting that the cells synthesized a trypsin-sensitive material that was laid down between the cell surface and the WGA-coated dish. Regeneration of trypsin sensitivity was not blocked by cycloheximide.

Key words

epithelial cells lectin attachment 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Reid, L. M.; Roskind, M. New techniques for culturing differentiated cells: Reconstituted basement membrane rafts. Methods Enzymol. 58: 263–276; 1979.PubMedCrossRefGoogle Scholar
  2. 2.
    Rauvala, H.; Hakamori, S. I. Studies on cell adhesion and recognition. III. The occurrence ofα-mannosidase at the fibroblast cell surface, and its possible role in cell recognition. J. Cell Biol. 88: 149–159; 1981.PubMedCrossRefGoogle Scholar
  3. 3.
    Ceri, H.; Shadle, P.; Kobiler, D.; Barondes, S. H. Extracellular lectin and its glycoaminoglycan inhibitor in chick muscle cultures. J. Supramol. Struct. 11: 61–67; 1979.PubMedCrossRefGoogle Scholar
  4. 4.
    Day, R. M.; Lenhoff, H. M. Hydra mesoglea: A model for investigating epithelial cell-basement membrane interactions. Science 211: 291–294; 1981.PubMedCrossRefGoogle Scholar
  5. 5.
    Ekblom, P.; Alitalo, K.; Vaheri, A.; Timpl, R.; Saxén, L. Induction of a basement membrane glycoprotein in embryonic kidney: Possible role of laminin in morphogenesis. Proc. Natl. Acad. Sci. USA 77: 485–489; 1980.PubMedCrossRefGoogle Scholar
  6. 6.
    Grinnell, F. Adhesiveness and extracellular substrata. Int. Rev. Cytol. 53: 65–144; 1978.PubMedGoogle Scholar
  7. 7.
    Gerfaux, J.; Chany-Fournier, F.; Bardos, P.; Muh, J. P.; Chany, C. Lectin-like activity of components extracted from human glomerular basement membrane. Proc. Natl. Acad. Sci. USA 76: 5129–5133; 1979.PubMedCrossRefGoogle Scholar
  8. 8.
    Yamada, K. M.; Yamada, S. S.; Pastan, I. The major cell surface glycoprotein of chick embryo fibroblasts is an agglutinin. Proc. Natl. Acad. Sci. USA 72: 3158–3162; 1975.PubMedCrossRefGoogle Scholar
  9. 9.
    Roberson, M. M.; Armstrong, P. B. Carbohydrate-binding component of amphibian embryo cell surfaces: Restriction to surface regions capable of cell adhesion. Proc. Natl. Acad. Sci. USA 77: 3460–3463; 1980.PubMedCrossRefGoogle Scholar
  10. 10.
    Kleinman, H. K.; Hewitt, A. T.; Murray, J. C.; Liotta, L. A.; Rennard, S. I.; Pennypacker, J. P.; McGoodwin, E. B.; Martin, G. R.; Fishman, P. H. Cellular and metabolic specificity in the interaction of adhesion proteins with collagen and with cells. J. Supramol. Struct. 11: 69–78; 1979.PubMedCrossRefGoogle Scholar
  11. 11.
    Vlodavsky, I.; Lui, G. M.; Gospodarowicz, D. Morphological appearance, growth behavior and migratory activity of human tumor cells maintained on extracellular matrix versus plastic. Cell 19: 607–616; 1980.PubMedCrossRefGoogle Scholar
  12. 12.
    Taub, M.; Chuman, L.; Saier, M. H., Jr.; Sato, G. Growth of Madin-Darby canine kidney epithelial cell (MDCK) line in hormone-supplemented, serum-free medium. Proc. Natl. Acad. Sci. USA 76: 3338–3342; 1979.PubMedCrossRefGoogle Scholar
  13. 13.
    Bretting, H.; Kabat, E. A.; Liao, J.; Pereira, M. E. A. Purification and characterization of the agglutinins from the spongeAaptos papillata and a study of their combining sites. Biochemistry 15: 5029–5038; 1976.PubMedCrossRefGoogle Scholar
  14. 14.
    Bretting, H.; Phillips, S. G.; Klumpart, H. J.; Kabat, E. A. A mitogenic lactose-binding lectin from the spongeGeodia cydonium. J. Immunol. 127: 1652–1658; 1981.PubMedGoogle Scholar
  15. 15.
    Bretting, H.; Kabat, E. A. Purification and characterization of the agglutinins from the spongeAxinella polypoides and a study of their combining sites. Biochemistry 15: 3228–3236; 1976.PubMedCrossRefGoogle Scholar
  16. 16.
    Wu, A. M. T.; Kabat, E. A.; Gruczo, F. G.; Allen, H. J. Immunochemical studies on the combining site of thed-galacto-pyranose and 2-acetamido-2-deoxy-d-galactopyranose specific lectin isolated fromBauhinia purpurea alba seeds. Arch. Biochem. Biophys. 204: 662–689; 1980.CrossRefGoogle Scholar
  17. 17.
    Wu, A. M. T.; Kabat, E. A.; Gruczo, F. G.; Poretz, R. D. Immunochemical studies on the reactivities and combining sites of thed-galacto pyranose and 2-acetamido-2-deoxy-d-galacto pyranose specific lectin purified fromSophra japonica seeds. Arch. Biochem. Biophys. 209: 191–208; 1981.PubMedCrossRefGoogle Scholar
  18. 18.
    Sugii, S.; Kabat, E. A. Immunochemical specificity of the combining site ofWistaria floribunda hemagglutinin. Biochemistry 19: 1192–1199; 1980.PubMedCrossRefGoogle Scholar
  19. 19.
    Kaladas, P. M.; Kabat, E. A.; Kimia, A.; Ersson, B. The specificity of the combining sites of the lectin fromVicia villosa seeds which react with cytotoxic lymphoblasts. Mol. Immunol. In press.Google Scholar
  20. 20.
    Wood, C.; Kabat, E. A.; Ebisu, S.; Goldstein, I. J. An immunochemical study of the combining sites of the second lectin isolated fromBandeiraea simplicifolia (BSII). Ann. Immunol. (Inst. Pasteur) 129C: 143–158; 1978.Google Scholar
  21. 21.
    Hammarstrom, S.; Kabat, E. A. Studies on specificity and binding properties of the blood group A reactive hemagglutinin fromHelix pomatia. Biochemistry 10: 1684–1692; 1971.PubMedCrossRefGoogle Scholar
  22. 22.
    Pereira, M. E. A.; Kabat, E. A. Specificity of purified hemagglutinin (lectin) fromLotus tetragonolobus. Biochemistry 13: 3184–3192; 1974.PubMedCrossRefGoogle Scholar
  23. 23.
    Moreno, C.; Kabat, E. A. Studies on human antibodies. VIII. Properties and association constants of human antibodies to blood group A substance purified with insoluble specific adsorbants and fractionally eluted with mono- and oligosaccharide. J. Exp. Med. 129: 871–896; 1969.PubMedCrossRefGoogle Scholar
  24. 24.
    Allen, P. Z.; Kabat, E. A. Immunochemical studies on blood groups: XXII. Immunochemical studies on the nondialyzable residue from partially hydrolyzed blood groups A, B and O(H) substances (Pl fractions). J. Immunol. 82: 340–357; 1959.PubMedGoogle Scholar
  25. 25.
    Rupley, J. A. The hydrolysis of chitin by concentrated hydrochloric acid, and the preparation of low-molecular weight substrates for lysozyme. Biochim. Biophys. Acta 83: 245–255; 1964.PubMedGoogle Scholar
  26. 26.
    Phillips, S. G.; Andrews, R. V. Some putative solutions for tissue cultured cells. Exp. Cell Res. 16: 678–682; 1959.PubMedCrossRefGoogle Scholar
  27. 27.
    Monsigny, M.; Roche, A. C.; Sene, C.; Maget-Dana, R.; Delmotte, F. Sugar-lectin interactions: How does wheat-germ agglutinin bind sialoglycoconjugates? Eur. J. Biochem. 104: 147–153; 1980.PubMedCrossRefGoogle Scholar
  28. 28.
    Gospodarowicz, D.; Greenburg, D.; Birdwell, C. R. Determination of cellular shape by the extracellular matrix and its correlation with the control of cellular growth. Cancer Res. 38: 4155–4171; 1978.PubMedGoogle Scholar
  29. 29.
    Grinnell, F.; Hays, D. G. Induction of cell spreading by substratum-adsorbed ligands directed against the cell surface. Exp. Cell Res. 116: 275–284; 1978.PubMedCrossRefGoogle Scholar
  30. 30.
    McKeehan, W. L.; Ham, R. G. Stimulation of clonal growth of normal fibroblasts with substrata coated with basic polymers. J. Cell Biol. 71: 727–734; 1976.PubMedCrossRefGoogle Scholar
  31. 31.
    Klebe, R. J. Cell attachment to collagen: The requirement for energy. J. Cell Physiol. 86: 231–236; 1975.PubMedCrossRefGoogle Scholar
  32. 32.
    Schor, S. L.; Court, J. Different mechanisms in the attachment of cells to native and denatured collagen. J. Cell Sci. 38: 267–281; 1979.PubMedGoogle Scholar
  33. 33.
    Phillips, S. G.; Bretting, H.; Kabat, E. A. A galactose-inhibitable mitogen for human lymphocytes from the spongeAxinella polypoides. J. Immunol. 117: 1226–1232; 1976.PubMedGoogle Scholar
  34. 34.
    Poste, G.; Greenham, L. W.; Mallucci, L.; Reeve, P.; Alexander, D. J. The study of cellular microexudates by ellipsometry and their relationship to the cell coat. Exp. Cell Res. 78: 303–313; 1973.PubMedCrossRefGoogle Scholar
  35. 35.
    Bhavanandan, V. P.; Katlic, A. W. The interaction of wheat germ agglutinin with sialoglycoproteins. J. Biol. Chem. 254: 4000–4008; 1979.PubMedGoogle Scholar
  36. 36.
    Nicolson, G. L.; Lacorbiere, M.; Eckhart, W. Qualitative and quantitative interactions of lectins with untreated and neuraminidase-treated normal, wild-type and temperature-sensitive polyoma-transformed fibroblasts. Biochemistry 14: 172–179; 1975.PubMedCrossRefGoogle Scholar
  37. 37.
    Phillips, S. G.; Phillips, D. M.; Kabat, E. A.; Miller, O. J. Semen as a source of epithelial cells for culture. In Vitro 14: 639–650; 1978.PubMedCrossRefGoogle Scholar
  38. 38.
    Phillips, S. G.; Miller, O. J.; Kabat, E. A. ABH blood group antigens on cultured epithelial cells. Danes, B. S.; Douglas, W. H. J.; Cox, R. P. eds. In vitro epithelia and birth defects. Volume XVI (2) New York: Alan R. Liss, Inc.; 1980; 339–344.Google Scholar
  39. 39.
    Phillips, S. G.; Kabat, E. A.; Miller, O. J. Nylonfiber affinity selection of cells possessing membrane-bound blood group antigens. Exp. Cell Res. 127: 361–371; 1980.PubMedCrossRefGoogle Scholar
  40. 40.
    Wysocki, L. J.; Sato, V. L. Panning for lymphocytes: A method for cell selection. Proc. Natl. Acad. Sci. USA 75: 2844–2848; 1978.PubMedCrossRefGoogle Scholar

Copyright information

© Tissue Culture Association, Inc 1982

Authors and Affiliations

  • Stephanie Gordon Phillips
    • 1
  • Shiu-Lan Lui
    • 1
  • David M. Phillips
    • 2
  1. 1.Department of Human Genetics and Development and the Cancer Center/Institute for Cancer ResearchColumbia University College of Physicians and SurgeonsNew York
  2. 2.The Population CouncilNew York

Personalised recommendations