Advertisement

Cell Biophysics

, Volume 26, Issue 2, pp 79–102 | Cite as

Determination of the kinetics of permeation of dimethyl sulfoxide in isolated corneas

  • D. B. Walcerz
  • M. J. Taylor
  • A. L. Busza
Article

Abstract

Corneal cryopreservation requires that endothelial cells remain viable and intercellular structure be preserved. High viability levels for cryopreserved endothelial cells have been achieved, but preserving intercellular structure, especially endothelial attachment to Descemet's membrane, has proved difficult. Cell detachment apparently is not caused by ice, suggesting osmotic or chemical mechanisms. Knowledge of the permeation kinetics of cryoprotectants (CPAs) into endothelial cells and stroma is essential for controlling osmotic and chemical activity and achieving adequate tissue permeation prior to cooling. Proton nuclear magnetic resonance (NMR) spectroscopy was used to assess the permeation of dimethyl sulfoxide (DMSO) into isolated rabbit corneas. Corneas with intact epithelia were exposed to isotonic medium or 2.0 mol/L DMSO for 60 min and subsequently transferred to 2.0 or 4.0 mol/L DMSO, respectively, at 22, 0, or −10°C. DMSO concentration in the cornea was measured vs time. The Kedem-Katchalsky model was fitted to the data. Hydraulic permeability (m3/N·s) is 7.1×10−13+216%-11% at 22°C, 8.2×10−13+235%−21% at 0°C, and 1.7×10−14+19% −16% at −10°C. The reflection coefficient is 1.0+2%−1% at 22°C and 0°C, and 0.9±5% at −10°C. Solute mobility (cm/s) is 5.9×10−6+6%–11% at 22°C, 3.1×10−6+12%−11% at 0°C, and 5.0×10−8 cm/s+59%−40% at −10°C.

Index Entries

Corneal permeability diffusion diffusion coefficient difusion modeling hydraulic permeability dimethyl sulfoxide Arrhenius function cryopreservation nuclear magnetic resonance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Taylor, M. J. (1986) Clinical cryobiology of tissues: preservation of corneas.Cryobiology 23, 323–353.PubMedCrossRefGoogle Scholar
  2. 2.
    Hunt, C. J., Taylor, M. J., and Chapman, D. (1991) Exposure of rabbit corneas to multimolar concentrations of butane-2,3 diol: a transmission and scanning electron microscope study of the endothelium.Cryobiology 28, 561.Google Scholar
  3. 3.
    Taylor, M. J., Busza, A., Hunt, C. J., and Chapman, D. (1991) Permeation and toxicity measurements for butane-2,3-diol in rabbit corneas at 0°C.Cryobiology 28, 542.Google Scholar
  4. 4.
    Hunt, C. J., Taylor, M. J., Chapman, D., and Hayes, A. R. (1991) Ice formation in cryopreserved rabbit corneas: a freeze-substitution isothermal freeze-fixation and cryosem study.Cryobiology 28, 544.Google Scholar
  5. 5.
    Fahy, G. M. (1988) Vitrification, inLow Temperature Biotechnology: Emerging Applications and Engineering Contributions, (McGrath, J. J., and Diller, K. R., eds.), American Society of Mechanical Engineers, New York, pp. 113–146.Google Scholar
  6. 6.
    Fahy, G. M., McFarlane, D. R., Angell, C. A., and Meryman, H. T. (1984) Vitrification as an approach to cryopreservation.Cryobiology 21, 407–426.PubMedCrossRefGoogle Scholar
  7. 7.
    Pegg, D. E. (1987) Ice crystals in tissues and organs, inThe Biophysics of Organ Preservation, (Pegg, D. E. and Karow, A. M., eds.), Plenum, New York, pp. 117–140.Google Scholar
  8. 8.
    Taylor, M. J. and Hunt, C. J. (1989) Tolerance of corneas to multimolar dimethyl sulfoxide at 0°C: implications for cryopreservation.Invest. Opthalmol. 10, 400–412.Google Scholar
  9. 9.
    Fuller, B. J., Busza, A. L., and Proctor, E. (1989) Studies on cryoprotectant equilibration in the intact rat liver using nuclear magnetic resonance spectroscopy. A non-invasive method to assess distribution of dimethyl sulfoxide in tissues.Cryobiology 26, 112–118.PubMedCrossRefGoogle Scholar
  10. 10.
    Taylor, M. J. and Busza, A. L. (1992) A convenient, non-invasive method for measuring the kinetics of permeation of dimethyl sulphoxide into isolated corneas using nmr spectroscopy.Cryo-Lett. 13, 273–282.Google Scholar
  11. 11.
    Taylor, M. J. and Hunt, C. J. (1985) A new preservation solution for storage of corneas at low temperatures.Current Eye Res. 4, 963–973.CrossRefGoogle Scholar
  12. 12.
    Dikstein, S. and Maurice, D. M. (1972) The metabolic basis to the fluid pump in the cornea.J. Physiol. 221, 29–41.PubMedGoogle Scholar
  13. 13.
    Taylor, M. J. and Hunt, C. J. (1989) Hypothermic preservation of corneas in a hyperkalaemic solution (CPTES): I. Short-term storage in the absence of colloid osmotic agents.Br. J. Ophthalmol. 73, 781–791.PubMedCrossRefGoogle Scholar
  14. 14.
    Taylor, M. J., Hunt, C. J., and Madden, P. W. (1989) Hypothermic preservation of corneas in a hyperkalaeic solution (CPTES): II. Extended storage in the presence of chondroitin sulphate.Br. J. Ophthalmol. 73, 792–802.PubMedCrossRefGoogle Scholar
  15. 15.
    Hayes, A. R. (1985) A thermocouple welder.Cryo-Lett. 6, 13,14.Google Scholar
  16. 16.
    Fischbarg, J., Warshavsky, C. R., and Lim, J. J. (1977) Pathways for hydraulically and osmotically-induced water flows across epithelia.Nature 266, 71–74.PubMedCrossRefGoogle Scholar
  17. 17.
    Denbigh, K. (1981),The Principles of Chemical Equilibrium, Cambridge University Press, Cambridge, UK.Google Scholar
  18. 18.
    Lau, C. F., Wilson, P. T., and Fenby, D. V. (1970) Excess volumes of dimethyl sulphoxide mixtures.Aust. J. Chem. 23, 1143–1148.CrossRefGoogle Scholar
  19. 19.
    Friedman, M. H. and Green, K. (1971) Ion binding and donnan equilibria in rabbit corneal stroma.Am. J. Physiol. 221, 356–367.PubMedGoogle Scholar
  20. 20.
    Friedman, M. H., Kearns, M. H., Michenfelder, C. J., and Green, K. (1972) Contribution of the donnan osmotic pressure to the swelling pressure of corneal stroma.Am. J. Physiol. 222, 1565–1570.Google Scholar
  21. 21.
    Hart, R. W. and Farrell, R. A. (1971) Structural theory of the swelling pressure of corneal stroma in saline.Bull. Math. Biophys. 33, 165–186.PubMedCrossRefGoogle Scholar
  22. 22.
    Hodson, S., O'Leary, D., and Watkins, S. (1991) The measurement of ox corneal swelling pressure by osmometry.J. Physiol. 434, 399–408.PubMedGoogle Scholar
  23. 23.
    Lakshminarayanaiah, N. (1969)Transport Phenomena in Membranes, Academic, New York.Google Scholar
  24. 24.
    Fahy, G. M. (1980) Analysis of “solution effects” injury. Equations for calculating phase diagram information for the ternary system NaCl-dimethylsulfoxide-water and NaCl-glycerol-water.Biophys. J. 32, 837–850.PubMedCrossRefGoogle Scholar
  25. 25.
    Fahy, G. M. (1981) Simplified calculation of cell water, content during freezing and thawing in nonideal solutions of cryoprotective agents and its possible application to the study of “solution effects” injury.Cryobiology 18, 473–482.PubMedCrossRefGoogle Scholar
  26. 26.
    Pegg, D. E., Hunt, C. J., and Fong, L. P. (1987) Osmotic properties of the rabbit corneal endothelium and their relevance to cryopreservation.Cell Biophys. 10, 169–189.PubMedGoogle Scholar
  27. 27.
    Pegg, D. E. and Arnaud, F. G. (1990) Permeation of glycerol and propane-1,2-diol into human platelets.Cryobiology 27, 107–118.PubMedCrossRefGoogle Scholar
  28. 28.
    Grass, G. M., Cooper, E. R., and Robinson, J. R. (1988) Mechanisms of corneal drug penetration III: Modeling of molecular transport.J. Pharm. Sci. 77, 24–26.PubMedCrossRefGoogle Scholar
  29. 29.
    Kedem, O. and Katchalsky, A. (1958) Thermodynamic analysis of the permeability of biological membranes to non-electrolytes.Biochem. Biophys. Acta 27, 229–246.PubMedCrossRefGoogle Scholar
  30. 30.
    Maurice, D. M. (1969) The physical state of water in the corneal stroma, inThe Cornea: Macromolecular Organization of a Connective Tissue (Langham, M. E., ed.), Johns Hopkins Press, Baltimore, MD, pp. 193–204.Google Scholar
  31. 31.
    Gear, C. W. (1971)Numerical Initial Value Problems in Ordinary Differential Equations, Prentice Hall, Englewood Cliffs, NJ.Google Scholar
  32. 32.
    Hindmarsh, A. C. (1974)GEAR: Ordinary Differential Equation System Solver. Technical Report #UCID-30001 Rev. 3, Lawrence Livermore Laboratory, Livermore, CA.Google Scholar
  33. 33.
    Bevington, P. R. (1969),Data Reduction and Error Analysis for the Physical Sciences, McGraw-Hill, New York.Google Scholar
  34. 34.
    Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T. (1988)Numerical Recipes in C, Cambridge University Press, Cambridge, UK.Google Scholar
  35. 35.
    Elford, B. C. (1970) Diffusion and distribution of dimethyl sulfoxide in the isolated guinea pig Taenia Coli.J. Physiol. 209, 187–208.PubMedGoogle Scholar
  36. 36.
    Hempling, H. G. and White, S. (1984) Permeability of cultured megakaryocytopoietic cells of the rat to dimethyl sulfoxide.Cryobiology 21, 133–143.PubMedCrossRefGoogle Scholar
  37. 37.
    Mazur, P. and Rajotte, R. V. (1981) Permeability of the 17-day fetal rat pancreas to glycerol and dimethyl sulfoxide.Cryobiology 18, 1–16.PubMedCrossRefGoogle Scholar
  38. 38.
    Mazur, P. (1977) The role of intracellular freezing in the death of cells cooled at supraoptimal rates.Cryobiology 14, 251–272.PubMedCrossRefGoogle Scholar
  39. 39.
    Madden, P. W. (1989) The assessment of endothelial integrity by scanning electron microscopy and fluorescein diacetate staining following treatment with cryoprotective additives.Curr. Eye Res. 8, 17–36.PubMedCrossRefGoogle Scholar
  40. 40.
    Madden, P. W. and Taylor, M. J. (1988) Is dimethyl sulfoxide the best cryoprotectant for corneal cryopreservation?Cryobiology 25, 532,533.CrossRefGoogle Scholar
  41. 41.
    Smith, A. U., Ashwood-Smith, M. J., and Young M. R. (1963) Some in vitro studies on rabbit corneal tissues.Exp. Eye Res. 2, 71–87.PubMedCrossRefGoogle Scholar
  42. 42.
    Mishima, S. and Hedbys, B. O. (1967) The permeability of the corneal epithelium and endothelium to water.Exp. Eye Res. 6, 10–32.PubMedCrossRefGoogle Scholar
  43. 43.
    Green, K. and Green, M. A. (1969) Permeability to water of rabbit corneal membranes.Am. J. Physiol. 217, 635–641.PubMedGoogle Scholar
  44. 44.
    Hull, D. S., Green, K., Boyd, M., and Wynn, H. R. (1977) Corneal endothelium bicarbonate transport and the effect of carbonic anhydrase inhibitors on endothelial permeability and fluxes and corneal thickness.Invest. Ophth. V. 16, 883–892.Google Scholar
  45. 45.
    Klyce, S. D. and Russell, S. R. (1979) Numerical solution of the coupled transport equations applied to corneal hydration dynamics.J. Physiol. 292, 107–134.PubMedGoogle Scholar
  46. 46.
    Mayes, K. R. (1980) Further evidence for local osmotic coupling in the rabbit cornea.Biochem. Biophys. Acta 600, 831–837.PubMedCrossRefGoogle Scholar
  47. 47.
    Liebovitch, L. S., Fischbarg, J., and Koatz, R. (1981) Osmotic water permeability of rabbit corneal endothelium and its dependence on ambient concentration.Biochem. Biophys. Acta 646, 71–76.PubMedCrossRefGoogle Scholar
  48. 48.
    Fishbarg, J. and Montoreano, R. (1982) Osmotic permeabilities across corneal endothelium and antidiuretic hormone-stimulated toad urinary bladder structures.Biochem. Biophys. Acta 690, 207–214.CrossRefGoogle Scholar
  49. 49.
    Baum, J. P., Maurice, D. M., and McCarey, B. E. (1984) The active and passive transport of water across the corneal endothelium.Exp. Eye Res. 39, 335–342.PubMedCrossRefGoogle Scholar
  50. 50.
    Hodson, S. A. and Wigham, C. G. (1987) Paracellular ionic and transcellular water diffusions across rabbit corneal endothelium.J. Physiol. 385, 89–96.PubMedGoogle Scholar
  51. 51.
    Hodson, S. A. and Lawton, D. M. (1987) The apparent reflexion coefficient of the leaky corneal endothelium to sodium chloride is about one in the rabbit.J. Physiol. 385, 97–106.PubMedGoogle Scholar

Copyright information

© Humana Press Inc 1995

Authors and Affiliations

  • D. B. Walcerz
    • 1
  • M. J. Taylor
    • 2
  • A. L. Busza
    • 3
  1. 1.Department of Mechanical EngineeringWorcester Polytechnic InstituteWorcester
  2. 2.MRC Medical Cryobiology GroupUniversity Department of SurgeryCambridgeUK
  3. 3.Department of Biophysics, Hunterian InstituteThe Royal College of Surgeons of EnglandLondonUK

Personalised recommendations