Journal d’Analyse Mathématique

, Volume 50, Issue 1, pp 241–257 | Cite as

Elliptic perturbation for linear and nonlinear equations with a singular point

  • S. Kamin


Singular Point Nonlinear Equation Maximum Principle Dirichlet Problem Viscosity Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [CL] M. G. Crandall and P. L. Lions,Viscosity solutions of Hamilton-Jacobi equations, Trans. Am. Math. Soc.277 (1983), 1–42.MATHCrossRefMathSciNetGoogle Scholar
  2. [D] M. Day,Recent progress on the small parameter exit problem, preprint.Google Scholar
  3. [E] A. Eizenberg,The vanishing viscosity method for Hamilton-Jacobi equations with a singular point of attracting type, Commun. PDE12 (1987), 1–20.MATHMathSciNetCrossRefGoogle Scholar
  4. [EI] L. C. Evans and H. Ishii,A PDE approach to some asymptotic problems concerning random differential equations with small noise intensities, Ann. Inst. H. Poincare, Anal. Non. Lin.2 (1985), 1–20.MATHMathSciNetGoogle Scholar
  5. [FS] W. H. Fleming and P. E. Souganidis,Asymptotic series and the method of vanishing viscosity, Indiana Univ. Math. J.35 (1986), 425–447.MATHCrossRefMathSciNetGoogle Scholar
  6. [K1] S. Kamin,On elliptic singular perturbation problems with turning points, SIAM J. Math. Anal.10 (1979), 447–455.MATHCrossRefMathSciNetGoogle Scholar
  7. [K2] S. Kamin,Elliptic perturbation of a first order operator with a singular point of attracting type, Indiana Univ. Math. J.27 (1978), 935–952.MATHCrossRefMathSciNetGoogle Scholar
  8. [K3] S. Kamin,Exponential descent of solutions of elliptic singular perturbation problems, Commun. PDE9 (2) (1984), 197–213.MATHMathSciNetGoogle Scholar
  9. [K4] S. Kamin,Singlar perturbation problems and the Hamilton-Jacobi equation, Integr. Eq. Oper. Th.9 (1986), 95–105.MATHCrossRefMathSciNetGoogle Scholar
  10. [L] P. L. Lions,Generalized Solutions of Hamilton-Jacobi equations, Pitman, London, 1982.MATHGoogle Scholar
  11. [M] C. Miranda,Partial Differential Equations of Elliptic Type, Springer-Verlag, 1970.Google Scholar
  12. [MS] B. J. Matkowsky and Z. Schuss,The exit problem for randomly perturbed dynamical systems, SIAM J. Appl. Math.33 (1977), 365–382.MATHCrossRefMathSciNetGoogle Scholar
  13. [VF] A. D. Ventcel and M. I. Freidlin,On small perturbations of dynamical systems, Uspehi mat. Nauk25 (1970), 3–55; Russian Math. Surveys25 (1970), 1–56.MATHMathSciNetGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 1988

Authors and Affiliations

  • S. Kamin
    • 1
  1. 1.School of Mathematical Sciences, Raymond and Beverley Sackler Faculty of Exact SciencesTel Aviv UniversityTel AvivIsrael

Personalised recommendations