Skip to main content
Log in

Lead-exposure of neonatal rats through maternal milk

A confounded model

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Lead-exposed neonatal rats are frequently used as a model for plumbism in children. In most studies,PPb is administered to the dam, and it is assumed that the pups are exposed to Pb primarily from the dam's milk. Rat pups, however, are coprophagic and begin to consume the maternal feces in their second postnatal week. This experiment was designed to determine whether the maternal feces are a significant source of Pb in pups exposed via the lactating dam. Dams were administered Pb as lead acetate (PbAc), either through their drinking water (500 ppm PbAc) or through twice daily intubations (3 mg PbAc/Kg body wt) from postpartum d 1 (P1) to P21 (P0=day of birth). Control dams were administered deionized water. The dams were housed with their litters in stainless-steel hanging cages with wire-screened bottoms. Litters of exposed and control dams treated through their drinking water had access to either Pb-containing or Pb-free maternal fecal matter for 2 h/d during the late lactation period. Half of the litters from intubated dams had continuous access to maternal feces throughout the lactation period, whereas access was curtailed at P14 in the other litters. Lead content of the feces from Pb-exposed dams ranged from 1000 to 5000 μg Pb/g wet wt. At P21, Pb concentrations were 2–4 times higher in blood, brain, bone, and liver of pups that had access to Pb-contaminated feces than in pups that were exposed to Pb primarily through the mother's milk. When estimating exposure levels in pups receiving Pb through the lactating dam, coprophagy and the high content of Pb in the dam's feces must be taken into consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Pentschew and F. Garro,Acta Neuropathol. (Berlin) 6, 266 (1966).

    Article  CAS  Google Scholar 

  2. M. R. Krigman, M. J. Druse, T. D. Traylor, M. H. Wilson, L. R. Newell, and E. L. Hogan,J. Neuropathol. Exp. Neurol. 33, 671 (1974).

    PubMed  CAS  Google Scholar 

  3. P. Lampert, F. Garro, and A. Pentschew, inSymposium on Brain Edema, I. Klatzo and F. Seitelberger, eds., Springer, New York, NY, 1967, pp. 207–222.

    Google Scholar 

  4. I. A. Michaelson,Toxicol. Appl. Pharmacol. 26, 539 (1973).

    Article  PubMed  CAS  Google Scholar 

  5. E. K. Silbergeld and A. M. Goldberg,Life Sci. 13, 1275 (1973).

    Article  CAS  Google Scholar 

  6. M. R. Hejtmancik, Jr., E. B. Dawson, and B. J. Williams,J. Toxicol. Environ. Health 9, 77 (1982).

    PubMed  CAS  Google Scholar 

  7. M. W. Sauerhoff and I. A. Michaelson,Science 187, 1022 (1973).

    Article  Google Scholar 

  8. M. Golter and I. A. Michaelson,Science 187, 359 (1975).

    Article  PubMed  CAS  Google Scholar 

  9. E. K. Silbergeld and A. M. Goldberg, inLead Toxicity, R. L. Singhal and J. A. Thomas, eds., Urban and Schwarzenberg, Baltimore, MD, 1980, pp. 19–42.

    Google Scholar 

  10. I. A. Michaelson and M. W. Sauerhoff,Toxicol. Appl. Pharmacol. 28, 88 (1974).

    Article  PubMed  CAS  Google Scholar 

  11. L. W. Reiter, G. E. Anderson, J. W. Laskey, and D. F. Cahill,Environ. Health Perspect. 12, 119 (1975).

    Article  PubMed  CAS  Google Scholar 

  12. J. Kostas, D. J. McFarland, and W. G. Drew,Pharmacology 14, 435 (1976).

    PubMed  CAS  Google Scholar 

  13. T. L. Petit and D. P. Alfano,Pharmacol. Biochem. Behav. 11, 165 (1979).

    Article  PubMed  CAS  Google Scholar 

  14. D. M. Averill and H. L. Needleman, inLow Level Lead Exposure: The Clinical Implications of Current Research, H. L. Needleman, ed., Raven, New York, NY, 1980, pp. 201–210.

    Google Scholar 

  15. D. R. Brown,Toxicol. Appl. Pharmacol. 32, 628 (1975).

    Article  PubMed  CAS  Google Scholar 

  16. D. Krehbiel, G. A. Davis, L. M. LeRoy, and R. E. Bowman,Environ. Health Perspect. 18, 147 (1976).

    Article  PubMed  CAS  Google Scholar 

  17. D. H. Minsker, N. Moskalski, C. P. Peter, R. T. Robertson, and D. L. Bokelman,Biol. Neonat. 41, 193 (1982).

    CAS  Google Scholar 

  18. C. Winder, L. L. Garten, and P. D. Lewis,Neuropathol. Appl. Neurobiol. 9, 87 (1983).

    Article  PubMed  CAS  Google Scholar 

  19. I. A. Michaelson, R. D. Greenland, and W. Roth,Pharmacologist 16, 250 (1974).

    Google Scholar 

  20. M. Press,J. Neuropathol. Exp. Neurol. 36, 169 (1977).

    PubMed  CAS  Google Scholar 

  21. R. T. Louis-Ferdinand, D. R. Brown, S. F. Fiddler, W. C. Daugherty, and A. W. Klein,Toxicol. Appl. Pharmacol. 43, 351 (1978).

    Article  PubMed  CAS  Google Scholar 

  22. A. D. Toews, A. Kolber, J. Hayward, M. R. Krigman, and P. Morrell,Brain Res. 147, 131 (1978).

    Article  PubMed  CAS  Google Scholar 

  23. T. F. Sobotka and M. P. Cook,Am. J. Ment. Defic. 79, 5 (1974).

    PubMed  CAS  Google Scholar 

  24. R. J. Bull, P. M. Stanaszek, J. J. O'Neill, and S. D. Lutkenhoff,Environ. Health Perspect. 12, 89 (1975).

    Article  PubMed  CAS  Google Scholar 

  25. K. Jason and C. Kellogg,Pharmacol. Biochem. Behav. 15, 641 (1981).

    Article  PubMed  CAS  Google Scholar 

  26. S. R. Overmann,Toxicol. Appl. Pharmacol. 43, 351 (1977).

    Google Scholar 

  27. B. G. Gelman and I. A. Michaelson,J. Toxicol. Environ. Health 5, 671 (1979).

    Article  PubMed  CAS  Google Scholar 

  28. S. R. Overmann, L. Zimmer, and D. E. Woolley,Neurotoxicology 2, 725 (1981).

    PubMed  CAS  Google Scholar 

  29. M. C. C. Stephens and G. B. Gerber,Toxicol. Letts. 7, 373 (1981).

    Article  CAS  Google Scholar 

  30. R. B. Burright, P. J. Donovick, K. Michels, R. J. Fanelli, and Z. Dolinsky,Pharmacol. Biochem. Behav. 16, 631 (1982).

    Article  PubMed  CAS  Google Scholar 

  31. J. B. Campbell, D. E. Woolley, V. K. Vijakayan, and S. R. Overmann,Dev. Brain Res. 3, 595 (1982).

    Article  CAS  Google Scholar 

  32. Z. Dolinsky, R. G. Burright, and P. J. Donovick,Physiol. Behav. 30, 583. (1983).

    Article  PubMed  CAS  Google Scholar 

  33. J. M. Lefauconnier, G. Bernard, F. Mellerio, A. Sebille, and E. Cesarini,Experientia 39, 1030 (1983).

    Article  PubMed  CAS  Google Scholar 

  34. J. C. Kawamoto, V. K. Vijakayan, and D. E. Woolley,Neurobiol. Aging 5, 297 (1984).

    Article  PubMed  CAS  Google Scholar 

  35. S. M. Sato, J. M. Frazier, and A. M. Goldberg,Exp. Neurol. 85, 620 (1984).

    Article  PubMed  CAS  Google Scholar 

  36. J. M. Donald, M. G. Cutler, M. R. Moore, and M. Bradley,Neuropharmacology 25, 151 (1986).

    Article  PubMed  CAS  Google Scholar 

  37. C. Bailey and I. Kitchen,Dev. Brain Res. 22, 75 (1985).

    Article  CAS  Google Scholar 

  38. G. P. Cooper, D. A. Fox, W. E. Howell, R. D. Laurie, W. Tsang, and J. P. Lewskowski, inNeurotoxicity of the Visual System, W. H. Merigan and B. Weiss, eds., Raven, New York, NY, 1980, pp. 203–218.

    Google Scholar 

  39. S. M. Lasley, R. D. Greenland, D. J. Minnema, and I. A. Michaelson,Neurochem. Res. 9, 1675 (1984).

    Article  PubMed  CAS  Google Scholar 

  40. M. McCarren and C. V. Eccles,Neurobehav. Toxicol. Teratol. 5, 527 (1983).

    PubMed  CAS  Google Scholar 

  41. A. Eden,Nature 145, 628 (1940).

    Article  Google Scholar 

  42. R. H. Barnes, G. Fiala, B. McGehee, and A. Brown,J. Nutr. 63, 489 (1957).

    PubMed  CAS  Google Scholar 

  43. S. J. Kilpatrick, T. M. Lee, and H. Moltz,Physiol. Behav. 30, 539 (1983).

    Article  PubMed  CAS  Google Scholar 

  44. H. Moltz and T. M. Lee,Physiol. Behav. 26, 301 (1981).

    Article  PubMed  CAS  Google Scholar 

  45. A. Mylroie, L. Moore, and U. Erogbogbo,Toxicol. Appl. Pharmacol. 41, 361 (1977).

    Article  PubMed  CAS  Google Scholar 

  46. B. J. Winer,Statistical Principles in Experimental Design, 2nd Ed., McGraw-Hill, New York, NY, 1971, pp. 149–260.

    Google Scholar 

  47. R. L. Bornschein, D. A. Fox, and I. A. Michaelson,Toxicol. Appl. Pharmacol. 40, 577 (1977).

    Article  PubMed  CAS  Google Scholar 

  48. K. Kostial, I. Šimonović, and M. Pišonic,Nature (Lond.) 233, 564 (1971).

    Article  CAS  Google Scholar 

  49. G. B. Forbes and J. C. Reina,J. Nutr. 102, 647 (1972).

    PubMed  CAS  Google Scholar 

  50. H. M. Mykkanen, J. W. T. Dickerson, and M. C. Lancaster,Toxicol. Appl. Pharmacol. 51, 447 (1979).

    Article  PubMed  CAS  Google Scholar 

  51. H. M. Mykkanen, M. C. Lancaster, and J. W. T. Dickerson,Environ. Res. 28, 147 (1982).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mylroie, A.A., Tucker, C. & Rosselli-Austin, L. Lead-exposure of neonatal rats through maternal milk. Biol Trace Elem Res 14, 209–216 (1987). https://doi.org/10.1007/BF02795687

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02795687

Index Entries

Navigation