Skip to main content
Log in

Biochemical alteration of a metallothionein-like protein in developing rat brain

  • Original Articles
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Zinc participates extensively in the metabolism of carbohydrates, lipids, proteins, and nucleic acids and therefore is essential for the growth and development of all organs, including the brain. The concentrations of zinc in various regions of developing rat brain are nonuniform, and either remain the same or decline dramatically. Studies involving gel permeation chromatography on Sephadex G-75 have shown that unlike the hepatic metallothionein, the concentration of a metallothionein-like protein increases postnatally in the brain from 0.2 μg in 1 d after birth to 3.60 μg zinc/mg protein in 50 d after birth. Furthermore, high-performance liquid chromatographic studies have shown that the adult rat brain contains three small-molecular-weight zinc-binding proteins, one of which is stimulated following intracerebroventricular administration of zinc, producing metallothionein-like isoforms I and II, with retention times of 17.32 and 18.64 min, respectively. All three zinc-binding proteins are absent in the brains of newborn rats. It is proposed that the developmental alteration in the concentration of brain metallothionein-like protein may be related to zinc-mediated functions associated with the development and the maturation of brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. L. Vallee, inZinc Enzymes, vol. 5, T. G. Spiro, ed., John Wiley, New York, NY, 1983, pp. 3–24.

    Google Scholar 

  2. L. S. Hurley, J. Gowan, and H. Swenerton,Teratology 4, 199 (1971).

    Article  CAS  Google Scholar 

  3. L. S. Hurley,Physiol. Rev. 61, 249 (1981).

    PubMed  CAS  Google Scholar 

  4. M. Ebadi,J. Nutr. Growth Cancer 2, 81 (1985).

    Google Scholar 

  5. H. H. Sandstead, G. J. Fosmire, E. S. Halas, R. A. Jacob, D. S. Strobel, and E. O. Marks,Am. J. Clin. Nutr. 31, 844 (1977).

    Google Scholar 

  6. H. H. Sandstead, D. A. Strobel, G. M. Logan, E. O. Marks, and R. A. Jacob,Am. J. Clin. Nutr. 31, 844 (1978).

    PubMed  CAS  Google Scholar 

  7. E. S. Halas and H. H. Sandstead,Pediatr. Res. 9, 94 (1975).

    PubMed  CAS  Google Scholar 

  8. E. S. Halas, G. Reynolds, M. Rowe, M. Heinrich, and M. Pirc,Physiol. Behav. 18, 975 (1977).

    Article  PubMed  CAS  Google Scholar 

  9. D. P. Peters,Physiol. Behav. 20, 359 (1978).

    Article  PubMed  CAS  Google Scholar 

  10. E. S. Halas and H. H. Sandstead,Pediatr. Res. 9, 94 (1975).

    Article  PubMed  CAS  Google Scholar 

  11. E. S. Halas, M. D. Heinrich, and H. H. Sandstead,Physiol. Behav. 22, 991 (1979).

    Article  PubMed  CAS  Google Scholar 

  12. E. S. Halas, J. J. Eberhardt, M. A. Diers, and H. H. Sandstead,Physiol. Behav. 30, 371 (1983).

    Article  PubMed  CAS  Google Scholar 

  13. D. P. Peters,Physiol. Behav. 22, 1067 (1979).

    Article  PubMed  CAS  Google Scholar 

  14. M. S. Golub, M. E. Gershwin, and V. K. Vijayan,Physiol. Behav. 30, 409 (1983).

    Article  PubMed  CAS  Google Scholar 

  15. E. F. Gordon, inThe Neurobiology of Zinc. Part B: C. J. Frederickson, G. A. Howell, and E. J. Kasarskis, eds., Liss, New York, NY, 1984, pp. 77–98.

    Google Scholar 

  16. E. S. Halas and J. C. Kawamoto, inThe Neurobiology of Zinc. Part B: C. J. Frederickson, G. A. Howell, and E. J. Kasarskis, eds., Liss, New York, NY, 1984, pp. 91–107.

    Google Scholar 

  17. D. S. Olton, C. Collison, and M. Werz,Learn. Motivat. 8, 289 (1977).

    Article  Google Scholar 

  18. D. S. Olton, J. A. Walker, and F. H. Gage,Brain Res. 139, 295 (1978).

    Article  PubMed  CAS  Google Scholar 

  19. C. L. Dvergsten, G. J. Fosmire, D. A. Ollerich, and H. H. Sandstead,Brain Res. 271, 217 (1983).

    Article  PubMed  CAS  Google Scholar 

  20. C. L. Dvergsten, G. J. Fosmire, D. A. Ollerich, and H. H. Sandstead,Dev. Brain Res. 16, 11 (1984).

    Article  CAS  Google Scholar 

  21. C. L. Dvergsten, L. A. Johnson, and H. H. Sandstead,Dev. Brain Res. 16, 21 (1984).

    Article  CAS  Google Scholar 

  22. R. Mason, A. Bakka, G. P. Samarawickrama, and M. Webb,Br. J. Nutr. 45, 375 (1980).

    Article  Google Scholar 

  23. R. Mason, F. O. Brady, and M. Webb,Br. J. Nutr. 45, 391 (1981).

    Article  PubMed  CAS  Google Scholar 

  24. F. O. Brady and M. Webb,J. Biol. Chem. 256, 3931 (1981).

    PubMed  CAS  Google Scholar 

  25. F. O. Brady,Life Sci. 32, 2981 (1983).

    Article  PubMed  CAS  Google Scholar 

  26. G. W. Evans, P. E. Johnson, J. G. Brushmiller, and R. W. Ames,Anal. Chem. 51, 839 (1979).

    Article  PubMed  CAS  Google Scholar 

  27. M. Itoh, M. Ebadi, and S. Swanson,J. Neurochem. 41, 823, (1983).

    Article  PubMed  CAS  Google Scholar 

  28. M. Ebadi, R. J. White, and S. Swanson, inThe Neurobiology of Zinc, Part A: C. J. Frederickson, G. A. Howell, and E. J. Karaskis, eds., Liss, New York, NY, 1984, pp. 39–57.

    Google Scholar 

  29. M. Ebadi and J. C. Wallwork,Biol. Trace Elem. Res. 7, 129 (1985).

    Article  CAS  Google Scholar 

  30. S. Klauser, J. H. R. Kagi, and K. J. Wilson,Biochem. J. 209, 71 (1983).

    PubMed  CAS  Google Scholar 

  31. K. Suzuki, N. Sunaga, and T. Yajima,J. Chromatog. 303, 131 (1984).

    Article  CAS  Google Scholar 

  32. R. H. O. Buhler and J. H. R. Kagi,FEBS Lett. 39, 229 (1974).

    Article  PubMed  CAS  Google Scholar 

  33. M. Kimura, N. Otaki, and M. Imano, inMetallothioneins, J. H. R. Kagi and M. Nordberg, eds., tBirkhauser, Basel, (1979), pp. 163–168.

    Google Scholar 

  34. M. M. Bradford,Anal. Biochem. 72, 248 (1976).

    Article  PubMed  CAS  Google Scholar 

  35. F. R. Konig, and R. A. Klippel, inThe Rat Brain. William and Wilkins, Baltimore, MD 1963, p. 1.

    Google Scholar 

  36. H. Scheffe, inThe Analysis of Variance. Wiley, New York, NY, 1959, pp. 90–137.

    Google Scholar 

  37. J. Smeyers-Verbeke, E. Defrise-Gussenhoven, G. Ebinger, A. Lowenthal, and D. L. Massart,Clin. Chim. Acta 51, 309 (1974).

    Article  PubMed  CAS  Google Scholar 

  38. L. Wuyts, J. Smeyers-Verbeke, and D. L. Massart,Clin. Chim. Acta 72, 405 (1976).

    Article  PubMed  CAS  Google Scholar 

  39. I. L. Crawford and J. D. Connor,J. Neurochem. 19, 1451 (1972).

    Article  PubMed  CAS  Google Scholar 

  40. R. Kishi, T. Ikeda, H. Miyake, E. Uchino, T. Tsuzuki, and K. Inoue,Brain Res. 251, 180 (1982).

    Article  PubMed  CAS  Google Scholar 

  41. K. L. Wong and C. D. KlaassenToxicol. Appl. Pharmacol. 53, 343 (1980).

    Article  PubMed  CAS  Google Scholar 

  42. S. Jugo,Health Phys. 30, 204 (1976).

    Google Scholar 

  43. B. Momcilovic and K. Kostial,Environ. Res. 8, 214 (1974).

    Article  PubMed  CAS  Google Scholar 

  44. E. J. Underwood,Trace Elements in Human and Animal Nutrition, 4th Ed. Academic, New York, NY, 1977, pp. 56–108.

    Google Scholar 

  45. C. E. Casey, B. E. Guthrie, and M. F. Robinson,Biol. Trace Elem. Res. 4, 105 (1982).

    Article  CAS  Google Scholar 

  46. G. W. Evans and E. C. Johnson,J. Nutr. 111, 68 (1981).

    PubMed  CAS  Google Scholar 

  47. P. Blakeborough, D. N. Salter, and M. I. Gurr,Biochem. J. 209, 505 (1983).

    PubMed  CAS  Google Scholar 

  48. S. M. Sato, J. M. Frazier, and A. M. Goldberg,J. Neurosci. 4, 1671 and 1552 (1984).

    PubMed  CAS  Google Scholar 

  49. J. U. Bell,Toxicol. Appl. Pharmacol. 50, 101 (1979).

    Article  PubMed  CAS  Google Scholar 

  50. K. L. Wong and C. D. Klaassen,J. Biol. Chem. 254, 12399 (1979).

    PubMed  CAS  Google Scholar 

  51. M. Panemangalore, D. Banarjee, S. Onosaka, and M. G. Cherian,Dev. Biol. 97, 95 (1983).

    Article  PubMed  CAS  Google Scholar 

  52. D. M. Templeton, D. Banerjee, and M. G. Cherian,Can. J. Biochem. Cell Biol. 63, 16 (1985).

    Article  PubMed  CAS  Google Scholar 

  53. L. Ryden and H. F. Deutsch,J. Biol. Chem. 253, 519 (1978).

    PubMed  CAS  Google Scholar 

  54. J. R. Riordan and V. Richards,J. Biol. Chem. 255, 5380 (1980).

    PubMed  CAS  Google Scholar 

  55. H. Porter,Biochem. Biophys. Res. Commun. 56, 661 (1974).

    Article  PubMed  CAS  Google Scholar 

  56. I. Bremner and R. K. Mehra,Chem. Sci. 21, 117 (1983).

    CAS  Google Scholar 

  57. S. H. Oh and P. D. Whanger,Am. J. Physiol. 237, E18 (1979).

    PubMed  CAS  Google Scholar 

  58. J. W. Ridlington, D. E. Gorger, D. C. Chapman, and P. D. Whanger,Biol. Trace Elem. Res. 5, 175 (1983).

    Article  CAS  Google Scholar 

  59. D. R. Winge, K. B. Nielson, R. D. Zeikus, and W. R. Gray,J. Biol. Chem. 259, 11419 (1984).

    PubMed  CAS  Google Scholar 

  60. K. Munger, U. A. Germann, M. Beltramini, D. Niedermann, G. Baitella-Eberle, J. H. R. Kagi, and K. Lerch,J. Biol. 260, 10032 (1985).

    CAS  Google Scholar 

  61. M. Ebadi and Y. Hama, inExcitatory Amino Acids and Epilepsy, Y. Ben-Ari and R. Schwarcz, eds., Plenum, New York, NY, 1986, pp. 557–578.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ebadi, M. Biochemical alteration of a metallothionein-like protein in developing rat brain. Biol Trace Elem Res 11, 117–128 (1986). https://doi.org/10.1007/BF02795529

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02795529

Index Entries

Navigation