Biological Trace Element Research

, Volume 11, Issue 1, pp 117–128 | Cite as

Biochemical alteration of a metallothionein-like protein in developing rat brain

  • M. Ebadi
Original Articles


Zinc participates extensively in the metabolism of carbohydrates, lipids, proteins, and nucleic acids and therefore is essential for the growth and development of all organs, including the brain. The concentrations of zinc in various regions of developing rat brain are nonuniform, and either remain the same or decline dramatically. Studies involving gel permeation chromatography on Sephadex G-75 have shown that unlike the hepatic metallothionein, the concentration of a metallothionein-like protein increases postnatally in the brain from 0.2 μg in 1 d after birth to 3.60 μg zinc/mg protein in 50 d after birth. Furthermore, high-performance liquid chromatographic studies have shown that the adult rat brain contains three small-molecular-weight zinc-binding proteins, one of which is stimulated following intracerebroventricular administration of zinc, producing metallothionein-like isoforms I and II, with retention times of 17.32 and 18.64 min, respectively. All three zinc-binding proteins are absent in the brains of newborn rats. It is proposed that the developmental alteration in the concentration of brain metallothionein-like protein may be related to zinc-mediated functions associated with the development and the maturation of brain.

Index Entries

Zinc in different regions of rat brain zinc in developing rat brain metallothionein-like protein in developing rat brain zinc-binding proteins in rat brain during neonatal period zinc-stimulated metallothionein-like isoforms I and II in rat brain 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. L. Vallee, inZinc Enzymes, vol. 5, T. G. Spiro, ed., John Wiley, New York, NY, 1983, pp. 3–24.Google Scholar
  2. 2.
    L. S. Hurley, J. Gowan, and H. Swenerton,Teratology 4, 199 (1971).CrossRefGoogle Scholar
  3. 3.
    L. S. Hurley,Physiol. Rev. 61, 249 (1981).PubMedGoogle Scholar
  4. 4.
    M. Ebadi,J. Nutr. Growth Cancer 2, 81 (1985).Google Scholar
  5. 5.
    H. H. Sandstead, G. J. Fosmire, E. S. Halas, R. A. Jacob, D. S. Strobel, and E. O. Marks,Am. J. Clin. Nutr. 31, 844 (1977).Google Scholar
  6. 6.
    H. H. Sandstead, D. A. Strobel, G. M. Logan, E. O. Marks, and R. A. Jacob,Am. J. Clin. Nutr. 31, 844 (1978).PubMedGoogle Scholar
  7. 7.
    E. S. Halas and H. H. Sandstead,Pediatr. Res. 9, 94 (1975).PubMedGoogle Scholar
  8. 8.
    E. S. Halas, G. Reynolds, M. Rowe, M. Heinrich, and M. Pirc,Physiol. Behav. 18, 975 (1977).PubMedCrossRefGoogle Scholar
  9. 9.
    D. P. Peters,Physiol. Behav. 20, 359 (1978).PubMedCrossRefGoogle Scholar
  10. 10.
    E. S. Halas and H. H. Sandstead,Pediatr. Res. 9, 94 (1975).PubMedCrossRefGoogle Scholar
  11. 11.
    E. S. Halas, M. D. Heinrich, and H. H. Sandstead,Physiol. Behav. 22, 991 (1979).PubMedCrossRefGoogle Scholar
  12. 12.
    E. S. Halas, J. J. Eberhardt, M. A. Diers, and H. H. Sandstead,Physiol. Behav. 30, 371 (1983).PubMedCrossRefGoogle Scholar
  13. 13.
    D. P. Peters,Physiol. Behav. 22, 1067 (1979).PubMedCrossRefGoogle Scholar
  14. 14.
    M. S. Golub, M. E. Gershwin, and V. K. Vijayan,Physiol. Behav. 30, 409 (1983).PubMedCrossRefGoogle Scholar
  15. 15.
    E. F. Gordon, inThe Neurobiology of Zinc. Part B: C. J. Frederickson, G. A. Howell, and E. J. Kasarskis, eds., Liss, New York, NY, 1984, pp. 77–98.Google Scholar
  16. 16.
    E. S. Halas and J. C. Kawamoto, inThe Neurobiology of Zinc. Part B: C. J. Frederickson, G. A. Howell, and E. J. Kasarskis, eds., Liss, New York, NY, 1984, pp. 91–107.Google Scholar
  17. 17.
    D. S. Olton, C. Collison, and M. Werz,Learn. Motivat. 8, 289 (1977).CrossRefGoogle Scholar
  18. 18.
    D. S. Olton, J. A. Walker, and F. H. Gage,Brain Res. 139, 295 (1978).PubMedCrossRefGoogle Scholar
  19. 19.
    C. L. Dvergsten, G. J. Fosmire, D. A. Ollerich, and H. H. Sandstead,Brain Res. 271, 217 (1983).PubMedCrossRefGoogle Scholar
  20. 20.
    C. L. Dvergsten, G. J. Fosmire, D. A. Ollerich, and H. H. Sandstead,Dev. Brain Res. 16, 11 (1984).CrossRefGoogle Scholar
  21. 21.
    C. L. Dvergsten, L. A. Johnson, and H. H. Sandstead,Dev. Brain Res. 16, 21 (1984).CrossRefGoogle Scholar
  22. 22.
    R. Mason, A. Bakka, G. P. Samarawickrama, and M. Webb,Br. J. Nutr. 45, 375 (1980).CrossRefGoogle Scholar
  23. 23.
    R. Mason, F. O. Brady, and M. Webb,Br. J. Nutr. 45, 391 (1981).PubMedCrossRefGoogle Scholar
  24. 24.
    F. O. Brady and M. Webb,J. Biol. Chem. 256, 3931 (1981).PubMedGoogle Scholar
  25. 25.
    F. O. Brady,Life Sci. 32, 2981 (1983).PubMedCrossRefGoogle Scholar
  26. 26.
    G. W. Evans, P. E. Johnson, J. G. Brushmiller, and R. W. Ames,Anal. Chem. 51, 839 (1979).PubMedCrossRefGoogle Scholar
  27. 27.
    M. Itoh, M. Ebadi, and S. Swanson,J. Neurochem. 41, 823, (1983).PubMedCrossRefGoogle Scholar
  28. 28.
    M. Ebadi, R. J. White, and S. Swanson, inThe Neurobiology of Zinc, Part A: C. J. Frederickson, G. A. Howell, and E. J. Karaskis, eds., Liss, New York, NY, 1984, pp. 39–57.Google Scholar
  29. 29.
    M. Ebadi and J. C. Wallwork,Biol. Trace Elem. Res. 7, 129 (1985).CrossRefGoogle Scholar
  30. 30.
    S. Klauser, J. H. R. Kagi, and K. J. Wilson,Biochem. J. 209, 71 (1983).PubMedGoogle Scholar
  31. 31.
    K. Suzuki, N. Sunaga, and T. Yajima,J. Chromatog. 303, 131 (1984).CrossRefGoogle Scholar
  32. 32.
    R. H. O. Buhler and J. H. R. Kagi,FEBS Lett. 39, 229 (1974).PubMedCrossRefGoogle Scholar
  33. 33.
    M. Kimura, N. Otaki, and M. Imano, inMetallothioneins, J. H. R. Kagi and M. Nordberg, eds., tBirkhauser, Basel, (1979), pp. 163–168.Google Scholar
  34. 34.
    M. M. Bradford,Anal. Biochem. 72, 248 (1976).PubMedCrossRefGoogle Scholar
  35. 35.
    F. R. Konig, and R. A. Klippel, inThe Rat Brain. William and Wilkins, Baltimore, MD 1963, p. 1.Google Scholar
  36. 36.
    H. Scheffe, inThe Analysis of Variance. Wiley, New York, NY, 1959, pp. 90–137.Google Scholar
  37. 37.
    J. Smeyers-Verbeke, E. Defrise-Gussenhoven, G. Ebinger, A. Lowenthal, and D. L. Massart,Clin. Chim. Acta 51, 309 (1974).PubMedCrossRefGoogle Scholar
  38. 38.
    L. Wuyts, J. Smeyers-Verbeke, and D. L. Massart,Clin. Chim. Acta 72, 405 (1976).PubMedCrossRefGoogle Scholar
  39. 39.
    I. L. Crawford and J. D. Connor,J. Neurochem. 19, 1451 (1972).PubMedCrossRefGoogle Scholar
  40. 40.
    R. Kishi, T. Ikeda, H. Miyake, E. Uchino, T. Tsuzuki, and K. Inoue,Brain Res. 251, 180 (1982).PubMedCrossRefGoogle Scholar
  41. 41.
    K. L. Wong and C. D. KlaassenToxicol. Appl. Pharmacol. 53, 343 (1980).PubMedCrossRefGoogle Scholar
  42. 42.
    S. Jugo,Health Phys. 30, 204 (1976).Google Scholar
  43. 43.
    B. Momcilovic and K. Kostial,Environ. Res. 8, 214 (1974).PubMedCrossRefGoogle Scholar
  44. 44.
    E. J. Underwood,Trace Elements in Human and Animal Nutrition, 4th Ed. Academic, New York, NY, 1977, pp. 56–108.Google Scholar
  45. 45.
    C. E. Casey, B. E. Guthrie, and M. F. Robinson,Biol. Trace Elem. Res. 4, 105 (1982).CrossRefGoogle Scholar
  46. 46.
    G. W. Evans and E. C. Johnson,J. Nutr. 111, 68 (1981).PubMedGoogle Scholar
  47. 47.
    P. Blakeborough, D. N. Salter, and M. I. Gurr,Biochem. J. 209, 505 (1983).PubMedGoogle Scholar
  48. 48.
    S. M. Sato, J. M. Frazier, and A. M. Goldberg,J. Neurosci. 4, 1671 and 1552 (1984).PubMedGoogle Scholar
  49. 49.
    J. U. Bell,Toxicol. Appl. Pharmacol. 50, 101 (1979).PubMedCrossRefGoogle Scholar
  50. 50.
    K. L. Wong and C. D. Klaassen,J. Biol. Chem. 254, 12399 (1979).PubMedGoogle Scholar
  51. 51.
    M. Panemangalore, D. Banarjee, S. Onosaka, and M. G. Cherian,Dev. Biol. 97, 95 (1983).PubMedCrossRefGoogle Scholar
  52. 52.
    D. M. Templeton, D. Banerjee, and M. G. Cherian,Can. J. Biochem. Cell Biol. 63, 16 (1985).PubMedCrossRefGoogle Scholar
  53. 53.
    L. Ryden and H. F. Deutsch,J. Biol. Chem. 253, 519 (1978).PubMedGoogle Scholar
  54. 54.
    J. R. Riordan and V. Richards,J. Biol. Chem. 255, 5380 (1980).PubMedGoogle Scholar
  55. 55.
    H. Porter,Biochem. Biophys. Res. Commun. 56, 661 (1974).PubMedCrossRefGoogle Scholar
  56. 56.
    I. Bremner and R. K. Mehra,Chem. Sci. 21, 117 (1983).Google Scholar
  57. 57.
    S. H. Oh and P. D. Whanger,Am. J. Physiol. 237, E18 (1979).PubMedGoogle Scholar
  58. 58.
    J. W. Ridlington, D. E. Gorger, D. C. Chapman, and P. D. Whanger,Biol. Trace Elem. Res. 5, 175 (1983).CrossRefGoogle Scholar
  59. 59.
    D. R. Winge, K. B. Nielson, R. D. Zeikus, and W. R. Gray,J. Biol. Chem. 259, 11419 (1984).PubMedGoogle Scholar
  60. 60.
    K. Munger, U. A. Germann, M. Beltramini, D. Niedermann, G. Baitella-Eberle, J. H. R. Kagi, and K. Lerch,J. Biol. 260, 10032 (1985).Google Scholar
  61. 61.
    M. Ebadi and Y. Hama, inExcitatory Amino Acids and Epilepsy, Y. Ben-Ari and R. Schwarcz, eds., Plenum, New York, NY, 1986, pp. 557–578.Google Scholar

Copyright information

© Humana Press Inc. 1986

Authors and Affiliations

  • M. Ebadi
    • 1
  1. 1.Department of PharmacologyThe University of Nebraska College of MedicineOmaha

Personalised recommendations