Journal d’Analyse Mathématique

, Volume 9, Issue 1, pp 177–193 | Cite as

Variation diminishing transformations and orthogonal polynomials

  • I. I. Hirschman


Orthogonal Polynomial Real Function Hermite Polynomial Jacobi Polynomial Orthogonality Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Aissen, I. J. Schoenberg and A. Whitney, On the generating function of totally positive sequences I,Jour. d’Analyse Math., 2 (1852), pp. 93–103.MathSciNetGoogle Scholar
  2. [2]
    A. Edrei, On the generating functions of totally positive sequences, II,Jour. d’Analyse Math., 2 (1952), pp. 104–109.MATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    A. Edrei, On the generating function of a doubly infinite totally positive sequence,Trans. Amer. Math. Soc., 74 (1953), 367–383.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    A. Erdélyi, et al., Higher Transcendental Functions, New York, 1953.Google Scholar
  5. [5]
    I. I. Hirschman, Jr. Harmonic analysis and ultraspherical polynomials, Symposium on Harmonic Analysis and Related Integral Transforms, Cornell Univ. (1956).Google Scholar
  6. [6]
    I. I. Hirschman, Jr., Variation diminishing Hankel transforms and Variation diminishing transformations and ultraspherical polynomials,Jour. d’Analyse Math., 8 (1960–1961), pp. 307–336 and 337–360.MathSciNetGoogle Scholar
  7. [7]
    I. I. Hirschman, Jr., and D. V. Widder, The Convolution Transform, Princeton, 1955.Google Scholar
  8. [8]
    G. Pólya and G. Szegö, Aufgaben und LehrsÄtze aus der Analysis, Berlin, 1925.Google Scholar
  9. [9]
    I. J. Schoenberg, On Pólya frequency functions I,Jour. d’Analyse Math., 1 (1951), pp. 331–374.MATHMathSciNetGoogle Scholar
  10. [10]
    I. J. Schoenberg, On Pólya frequency functions, II,Acta Scientiarum Mathe.- matkarum Szeged, 12 (1950).Google Scholar
  11. [11]
    I. J. Schoenberg, Some analytical aspects of the problem of smoothing, Courant Anniversary Volume, New York, 1948, pp. 351–370.Google Scholar
  12. [12]
    G. Szegö, Orthogonal Polynomials, New York, 1939.Google Scholar
  13. [13]
    A. Whitney, A reduction theorem for totally positive matrices.Jour. d’Analyse Math., 2 (1952), pp. 88–92.MATHMathSciNetGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 1961

Authors and Affiliations

  • I. I. Hirschman
    • 1
  1. 1.Washington UniversitySaint LouisUSA

Personalised recommendations