Advertisement

Biological Trace Element Research

, Volume 16, Issue 1, pp 27–42 | Cite as

Effects of adrenalectomy and of adrenal hormones on the tissue distribution of 14 elements in the rat

  • G. LeBlondel
  • P. Allain
Article

Abstract

The effects of adrenalectomy (ADY) and of replacement therapy using a mineralocorticoid, deoxycorticosterone (DOC) and a glucocorticoid, dexamethasone (DEX) on the tissue distribution of elements in the rat, were studied under semichronic conditions. The elements, Na, K, Ca, Mg, Fe, S, P, Rb, Sr, Mn, Cu, and Zn were determined in whole blood, plasma, brain liver, kidney, heart, skeletal muscle, spleen, thymus, and bone. Additionally Mo was determined in kidney and liver and Ba in bone. ADY modified concentrations of all elements tested. Small changes were observed for K, Mg, Ca, S, and P, whereas much larger changes were noted for Na, Rb, and Sr. Cu, Zn, and Fe were mainly modified in liver and kidney, organs involved in storage and/or elimination. The consequences of ADY were corrected fairly well by DEX for Mg, Mn, Ca, Cu, and Mo; by DOC for Na and K, and by the two corticoids for Zn, Fe, Sr, and Rb. This study revealed that corticoids, mainly glucocorticoids, play an important role in the plasma and tissue balance of elements. It is suggested that these results may have a pathological and clinical significance.

Index Entries

Wistar rats adrenalectomy deoxycorticosterone dexamethasone element homeostasis tissue distribution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. J. Bia, K. Tyler, and R. A. De Fronzo,Endocrinol. 111, 882 (1982).Google Scholar
  2. 2.
    F. O. Brady,Life Sci. 28, 1647 (1981).PubMedCrossRefGoogle Scholar
  3. 3.
    F. O. Brady and P. C. Bunger,Biochem. Biophys. Res. Commun. 91, 911 (1979).PubMedGoogle Scholar
  4. 4.
    R. K. Chandra,J. Am. Coll. Nutr. 4, 5 (1985).PubMedGoogle Scholar
  5. 5.
    J. K. Chester,Trace Element Metabolism in Animals, vol. 2, pp. 39–50, W. G. Hoelzstra, J. W. Suttie, H. E. Ganther, and W. Mertz, eds., University Park Press, Baltimore, MD (1974).Google Scholar
  6. 6.
    D. F. Cole,Endocrinol. 6, 245 (1950).Google Scholar
  7. 7.
    E. J. Conway and D. Hingerty,Biochem. 40, 561 (1946).Google Scholar
  8. 8.
    G. C. Cotzias, L. C. Tang, S. T. Miller, D. Sladicsimic, and L. S. Hurley,Science 176, 410 (1972).PubMedCrossRefGoogle Scholar
  9. 9.
    R. J. Cousins,J. Inher. Metab. Dis. 6, Suppl. 1, 15 (1983).PubMedCrossRefGoogle Scholar
  10. 10.
    P. H. Curtiss, W. S. Clark, and C. H. Herndon,J. Amer. Med. Assn. 156, 467 (1954).Google Scholar
  11. 11.
    R. A. De Fronzo, R. Lee, and J. A. Bia,Kidney Int. 17, 586 (1980).CrossRefGoogle Scholar
  12. 12.
    H. Ebel,J. Clin. Chem. Clin. Biochem. 18, 257 (1980).PubMedGoogle Scholar
  13. 13.
    M. L. Failla and R. A. Kiser,J. Nutr. 111, 1900 (1981).PubMedGoogle Scholar
  14. 14.
    M. L. Failla and R. A. Kiser,Am. J. Physiol. 244, E115 (1983).PubMedGoogle Scholar
  15. 15.
    K. H. Falchuk,N. Engl. J. Med. 296, 1129 (1977).PubMedCrossRefGoogle Scholar
  16. 16.
    A. S. Fauci, D. C. Dale, and J. E. Bazow,Ann. Intern. Med. 84, 304 (1976).PubMedGoogle Scholar
  17. 17.
    O. Ferment and Y. Touitou,Comp. Biochem. Physiol. 82A, 753 (1985).CrossRefGoogle Scholar
  18. 18.
    A. Flynn, W. H. Strain, W. J. Pories, and O. A. Hill,Lancet, April 14, 789 (1973).Google Scholar
  19. 19.
    I. W. French and J. F. Manery,Can. J. Biochem. 42, 1459 (1964).PubMedGoogle Scholar
  20. 20.
    S. M. Friedman, R. A. McIndoe, and M. Tanaka,Am. J. Physiol. 247, H902 (1984).PubMedGoogle Scholar
  21. 21.
    S. M. Friedman, M. Nakashima, and C. L. Friedman,Endocrinol. 62, 259 (1957).Google Scholar
  22. 22.
    R. Garcia, W. Debinski, J. Gutkowska, O. Kuchel, G. Thibault, J. Genest, and M. Cantin,Biochem. Biophys. Res. Commun. 131, 806 (1985).PubMedCrossRefGoogle Scholar
  23. 23.
    L. C. Garg, N. Narang, and C. S. Wingo,Am. J. Physiol. 248, F487 (1985).PubMedGoogle Scholar
  24. 24.
    A. S. Gordon, S. J. Piliero, and D. Landau,Endocrinol. 49, 497 (1951).CrossRefGoogle Scholar
  25. 25.
    G. Gregoriadis and T. L. Sourkes,Can. J. Biochem. 48, 160 (1970).PubMedCrossRefGoogle Scholar
  26. 26.
    S. Hanna and I. McIntyre,Lancet August 13, 348 (1960).Google Scholar
  27. 27.
    R. I. Henkin,Trace Element Metabolism in Animals, vol. 2, pp. 647–651, W. G. Hoelzstra, J. W. Suttie, H. E. Ganther, and W. Mertz, eds., University Park Press, Baltimore, MD (1974).Google Scholar
  28. 28.
    M. Horster and A. Lückhoff,J. Physiol. 340, 503 (1983).PubMedGoogle Scholar
  29. 29.
    M. Jacob, C. M. Chan, and J. C. Smith,Nutr. Res. 4, 877 (1984).CrossRefGoogle Scholar
  30. 30.
    K. N. Jeejeebhoy, A. Bruce-Robertson, and U. Sodtke,Biochem. J. 130, 533 (1972).PubMedGoogle Scholar
  31. 31.
    F. A. Kallfelz and R. H. Wasserman,Calc. Tissue Res. 3, 74 (1969).CrossRefGoogle Scholar
  32. 32.
    C. J. Kenyon, N. A. Saccoccio, and D. J. Morris,J. Endocrinol. 100, 93 (1984).PubMedGoogle Scholar
  33. 33.
    R. Kilpatrick, H. E. Renschler, K. S. Munro, and G. H. Wilson,J. Physiol. 133, 194 (1956).PubMedGoogle Scholar
  34. 34.
    D. V. Kimberg, R. D. Baerg, E. Gershon, and R. T. Graudusius,J. Clin. Invest. 50, 1309 (1971).PubMedGoogle Scholar
  35. 35.
    S. Kimura and H. Rasmussen,J. Biol. Chem. 252, 4, 1217 (1977).PubMedGoogle Scholar
  36. 36.
    C. D. Klaasen,Toxicol. 20, 275 (1981).CrossRefGoogle Scholar
  37. 37.
    J. V. Klavins,Ann. Clin. Lab. Sci. 10, 327 (1980).PubMedGoogle Scholar
  38. 38.
    P. Korge, R. Masso, and R. Roosson,Acta Biol. Med. Germanica 32, 363 (1974).PubMedGoogle Scholar
  39. 39.
    G. Leblondel, Y. Mauras, and P. Allain,Biol. T. Elem. Res. 10, 327 (1986).Google Scholar
  40. 40.
    J. A. McGrath and D. F. Goldspink,Biochem. J. 206, 641 (1982).PubMedGoogle Scholar
  41. 41.
    F. Morel and A. Doucet,Phys. Rev. 66, 377 (1986).Google Scholar
  42. 42.
    D. J. Morris, J. S. Berek, and R. P. Davis,Endocrinol. 92, 989 (1973).CrossRefGoogle Scholar
  43. 43.
    B. E. C. Nordin,Calcium, Phosphate and Magnesium Metabolism, B. E. C. Nordin, ed., Churchill Livingston (1976).Google Scholar
  44. 44.
    A. Pecile and E. Muller,J. Endocrinol. 36, 401 (1966).PubMedCrossRefGoogle Scholar
  45. 45.
    D. B. Rhoads, A. Woo, and W. Epstein,Biochim. Biophys. Acta 469, 45 (1977).PubMedCrossRefGoogle Scholar
  46. 46.
    P. Schultzer,J. Physiol. 84, 70 (1935).PubMedGoogle Scholar
  47. 47.
    A. Simeckova, M. Neradilova, and R. Reisenauer,Physiol. Bohemoslovaca 34, 155 (1985).Google Scholar
  48. 48.
    B. Singer and M. P. Stack-Dunne,J. Endocrinol. 12, 130 (1955).PubMedGoogle Scholar
  49. 49.
    R. K. Studer and A. B. Borle,Biochim. Biophys. Acta 804, 377 (1984).PubMedCrossRefGoogle Scholar
  50. 50.
    M. Thomasset,Toxiques Nucléaires, pp. 78–102, Masson-Paris (1982).Google Scholar
  51. 51.
    G. R. Tudhope,Clin. Haematol. 1, 475 (1972).PubMedGoogle Scholar
  52. 52.
    E. J. Underwood,Trace Elements in Human and Animal Nutrition, 4th Ed., pp. 56–108, E. J. Underwood, ed., Academic, New York, San Francisco, London (1977).Google Scholar
  53. 53.
    A. J. Vander, R. L. Malvin, W. S. Wilde, J. Lapides, L. P. Sullivan, and V. M. McMurray,Proc. Soc. Exp. Biol. Med. 99, 323 (1958).PubMedGoogle Scholar
  54. 54.
    M. Walser, B. H. B. Robinson, and J. W. Duckett,J. Clin. Invest. 42, 456 (1963).PubMedGoogle Scholar
  55. 55.
    P. C. Will and M. E. Barnett,Lab. Animal Sci. 33, 172 (1983).Google Scholar

Copyright information

© The Humana Press Inc 1988

Authors and Affiliations

  • G. LeBlondel
    • 1
  • P. Allain
    • 1
  1. 1.Laboratoire de PharmacologieCentre Hospitalier UniversitaireAngers CedexFrance

Personalised recommendations