Journal d’Analyse Mathématique

, Volume 49, Issue 1, pp 9–14 | Cite as

A note on “universal” Phragmén-Lindelöf theorems and a lemma of Beurling

  • Matts Essén


Real Axis Jordan Curve Subharmonic Function Extremal Length Positive Real Axis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Arsove and A. Huber,Local behavior of subharmonic functions, Ind. Univ. Math. J.22 (1973), 1191–1199.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    A. Beurling,Études sur un problème de majoration, Almqvist et Wiksell, Uppsala, 1933.MATHGoogle Scholar
  3. 3.
    D. M. Campbell, J. G. Clunie and W. K. Hayman,Research problems in complex analysis, inAspects of Contemporary Complex Analysis, D. A. Brannan and J. G. Clunie (eds.), Academic Press, London, 1980.Google Scholar
  4. 4.
    Y. Domar,Extensions of the Titchmarsh convolution theorem with applications in the theory of invariant subspaces, Proc. London Math. Soc. (3)46 (1983), 288–300.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    W. H. J. Fuchs,A Phragmén-Lindelöf theorem conjectured by D. J. Newman, Trans. Amer. Math. Soc.267 (1981), 285–293.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    F. W. Gehring, W. K. Hayman and A. Hinkkanen,Analytic functions satisfying Hölder conditions on the boundary, J. Approximtion Theory35 (1982), 243–249.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    M. Ohtsuka,Dirichlet problem, extremal length and prime ends, Van Nostrand Reinhold Mathematical Studies22 (1967).Google Scholar
  8. 8.
    S. Toppila,An application of a distortion theorem of Aharnov and Srebro to a problem of Newman, J. Analyse Math., this issue.Google Scholar

Copyright information

© The Weizmann Science Press of Israel 1987

Authors and Affiliations

  • Matts Essén
    • 1
  1. 1.Department of MathematicsUniversity of UppsalaUppsalaSweden

Personalised recommendations