Journal d’Analyse Mathématique

, Volume 47, Issue 1, pp 180–192 | Cite as

Trace paley-wiener theorem for reductivep-adic groups

  • J. Bernstein
  • P. Deligne
  • D. Kazhdan


Algebraic Variety Parabolic Subgroup Regular Function Trace Form Open Compact Subgroup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. N. Bernstein and P. Deligne,Le “centre” de Bernstein, inReprésentations des groupes reductifs sur un corps local, Hermann, Paris, 1985.Google Scholar
  2. 2.
    J. Bernstein and A. Zelevinsky,Induced representations of reductive p-adic groups I, Ann. Sci. Ec. Norm. Super.10 (1977), 441–472.MATHMathSciNetGoogle Scholar
  3. 3.
    A. Borel and N. Wallach,Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups, Ann. of Math. Studies, Princeton Univ. Press, 1980.Google Scholar
  4. 4.
    W. Casselman,Characters and Jacquet modules, Math. Ann.230 (1977), 101–105.CrossRefMathSciNetGoogle Scholar
  5. 5.
    J. Dixmier,Algebres Enveloppantes, Gauthier-Villars, 1974.Google Scholar
  6. 6.
    D. Kazhdan,Cuspital geometry of p-adic groups, J. Analyse Math.47 (1986), 1–36 (this issue).MATHMathSciNetGoogle Scholar
  7. 7.
    A. Zelevinsky,Induced representations of reductive p-adic groups II, Ann. Sci. Ec. Norm. Super.13 (1980), 165–210.MATHMathSciNetGoogle Scholar
  8. 8.
    D. Kazhdan,Representations of groups over close local fields, J. Analyse Math.47 (1986), 175–179 (this issue).MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 1986

Authors and Affiliations

  • J. Bernstein
    • 1
  • P. Deligne
    • 2
  • D. Kazhdan
    • 1
  1. 1.Department of MathematicsHarvard UniversityCambridgeUSA
  2. 2.Institute for Advanced StudiesPrinceton UniversityPrincetonUSA

Personalised recommendations