Skip to main content
Log in

Coalescing and annihilating random walk with ‘action at a distance’

  • Published:
Journal d’Analyse Mathématique Aims and scope

Abstract

We consider a system of particles which perform continuous time random walks onZ d. These random walks are independent as long as no two particles are at the same site or adjacent to each other. When a particle jumps from a site x to a sitey and there is already another particle aty or at some neighbory′ ofy, then there is an interaction. In the coalescing model, either the particle which just jumped toy is removed (or, equivalently, coalesces with a particle aty ory′) or all the particles at the sites adjacent toy (other thanx) are removed. In the annihilating random walk, the particle which just jumped toy and one particle aty ory′ annihilate each other. We prove that when the dimensiond is at least 9, then the density of this system is asymptotically equivalent toC/t for some constant C, whose value is explicitly given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Arratia,Limiting point processes for rescalings of coalescing and annihilating random walks on Z d, Ann. Probab.9 (1981), 909–936.

    Article  MATH  MathSciNet  Google Scholar 

  2. J. van den Berg and H. Kesten,Asymptotic density in a coalescing random walk model, Ann. Probab., to appear.

  3. M. Bramson and D. Griffeath,Asymptotics for interacting particles systems on Z d, Z. Wahrschein. verw. Gebiete53 (1980), 183–196.

    Article  MATH  MathSciNet  Google Scholar 

  4. M. Bramson and J. L. Lebowitz,Asymptotic behavior of densities for two-particle annihilating random walks, J. Statist. Phys.62 (1991), 297–372.

    Article  MathSciNet  Google Scholar 

  5. M. Bramson and J. L. Lebowitz,Spatial structure in diffusion-limited two-particle reactions, J. Statist. Phys.65 (1991), 941–951.

    Article  MATH  MathSciNet  Google Scholar 

  6. M. Bramson and J. L. Lebowitz,Spatial structure in low dimensions for diffusion-limited two-particle reactions, preprint.

  7. S. Chandrasekhar,Stochastic problems inphysics and astronomy, Rev. Modem Phys.15 (1943), 1–91 ; reprinted inSelected Papers on Noise and Stochastic Processes (N. Wax, ed) Dover New York, 1954.

    Article  MATH  MathSciNet  Google Scholar 

  8. Y. S. Chow and H. Teicher,Probability Theory, 2nd edition, Springer-Verlag, Berlin, 1988.

    MATH  Google Scholar 

  9. E. B. Dynkin,Theory of Markov Processes, Pergamon Press, Oxford, 1960.

    Google Scholar 

  10. D. Griffeath,Additive and Cancellative Interacting Particle Systems, Lecture Notes in Math.724, Springer-Verlag, Berlin, 1979.

    Google Scholar 

  11. H. Kesten,The speed of convergence in first-passage percolation, Ann. Appl. Probab.3 (1993), 296–338.

    Article  MATH  MathSciNet  Google Scholar 

  12. R. Lang and X. X. Nguyen,Smoluchowski’s theory of coagulation in colloids holds rigorously in the Boltzmann-Grad-limit, Z. Wahrschein. verw. Gebiete54 (1980), 227–280.

    Article  MATH  MathSciNet  Google Scholar 

  13. B. P. Lee and J. Cardy,Renormalization group study of the A + B → Ø diffusion-limited reaction, J. Statist. Phys.80 (1995), 971–1007.

    Article  MATH  MathSciNet  Google Scholar 

  14. B. P. Lee and J. Cardy,Erratum: Renormalization group study of the A + B → Ø diffusion-limited reaction, J. Statist. Phys.87 (1997), 951–954.

    Article  Google Scholar 

  15. T. M. Liggett,Interacting Particle Systems, Springer-Verlag, Berlin, 1985.

    MATH  Google Scholar 

  16. J. Neveu,Martingales a Temps Discret, Masson & Cie, Paris, 1972.

    Google Scholar 

  17. M. v. Smoluchowski,Drei VortrÄge über Diffusion, Brown’sehe Molekularbewegung und Koagulation von Kolloidteilchen, Physikalische Z.17(1916), 557–571 and 585–599.

    Google Scholar 

  18. M. v. Smoluchowski,Versuch ener mathematischen Theorie der Koagulationskinetik kolloider Lösungen, Z. Physikalische Chemie92 (1917), 129–168.

    Google Scholar 

  19. F. Spitzer,Principles of Random Walk, 2nd edition, Springer-Verlag, Berlin, 1976.

    MATH  Google Scholar 

  20. D. M. Stephenson,Asymptotic density in an N-threshold randomly coalescing and annihilating random walk on the d-dimensional integer lattice, PhD Thesis, Cornell University, 1999.

  21. A. S. Sznitman,Topics in propagation of chaos, in Ecole d’Eté de Probabilités de Saint-Flour XIX (P. L. Hennequin, ed.), Lecture Notes in Math.1464, Springer-Verlag, Berlin, 1991.

    Google Scholar 

  22. M. Talagrand,Concentration of measure and isoperimetric inequalities in product spaces, Publ. Math. IHES81 (1995), 73–205.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry Kesten.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kesten, H. Coalescing and annihilating random walk with ‘action at a distance’. J. Anal. Math. 80, 183–256 (2000). https://doi.org/10.1007/BF02791537

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02791537

Keywords

Navigation