Journal d’Analyse Mathématique

, Volume 95, Issue 1, pp 323–332 | Cite as

Sums of free membrane eigenvalues

  • Bodo Dittmar


LetD be a simply connected domain in the plane which is the image of the unit disk under a normalized conformal mapping, and let μ1=0<μ2≤μ3 be the free membrane eigenvalues. We prove that for anyn≥2,
$$A\sum\limits_2^n {\frac{1}{{\mu _j }} \geqslant \pi } \sum\limits_2^n {\frac{1}{{\mu _j ^{(o)} }}} $$
whereA is the area of the domainD and μ j (o) are the free membrane eigenvalues of the unit disk.


Unit Disk Connected Domain Isoperimetric Inequality Variational Characterization Neumann Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    C. Bandle,Extensions of an inequality by Pólya and Schiffer for vibrating membranes, Pacific J. Math.42 (1972), 543–555.MATHMathSciNetGoogle Scholar
  2. [2]
    C. Bandle,Isoperimetric inequality for some eigenvalues of an inhomogeneous, free membrane, SIAM J. Appl. Math.22 (1972), 142–147.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    C. Bandle,Isoperimetric Inequalities and Applications, Pitman Publ., London, 1980.MATHGoogle Scholar
  4. [4]
    R. Courant and D. Hilbert,Methods of Mathematical Physics, Vol. I, Wiley, New York, 1953, 1962.Google Scholar
  5. [5]
    B. Dittmar,Sums of reciprocal eigenvalues of the Laplacian, Math. Nachr.237 (2002), 45–61.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    G. H. Hardy, J. E. Littlewood and G. Pólya,Inequalities, Cambridge Univ. Press, London and New York, 1934, 1952.Google Scholar
  7. [7]
    P. Henrici,Applied and Computational Complex Analysis, Vol. III, Wiley, New York, 1986.MATHGoogle Scholar
  8. [8]
    J. Hersch,On symmetric membranes and conformal radius: some complements to Pólya's and Szegö's inequalities, Arch. Rational Mech. Anal.20 (1965), 378–395.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    P. Kröger,Upper bounds for the Neumann eigenvalues on a bounded domain in euclidean space, J. Funct. Anal.106 (1992), 353–357.MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    P. Kröger,On upper bounds for high order Neumann eigenvalues of convex domains in euclidean space, Proc. Amer. Math. Soc.127 (1999), 1665–1669.MATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    R. S. Laugesen and C. Morpurgo,Extremals for eigenvalues of Laplacians under conformal mapping, J. Funct. Anal.155 (1998), 64–108.MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    A. M. Marshall and I. Olkin,Inequalities: Theory of Majorization and its Applications, Academic Press, New York, 1979.MATHGoogle Scholar
  13. [13]
    N. Nadirashvili,Conformal maps and isoperimetric inequalities for eigenvalues of the Neumann problem, Israel Math. Conf. Proc.11 (1997), 197–201.MathSciNetGoogle Scholar
  14. [14]
    G. Pólya,On the characteristic frequencies of symmetric membranes, Math. Z.63 (1955), 331–337.MATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    G. Pólya and M. Schiffer,Convexity of functionals by transplantation, J. Analyse Math.3 (1954), 245–345.MATHMathSciNetCrossRefGoogle Scholar
  16. [16]
    G. Szegö,Inequalities for certain eigenvalues of a membrane of given area, J. Rational Mech. Anal.3 (1954), 343–356.MathSciNetGoogle Scholar
  17. [17]
    H. F. Weinberger,An isoperimetric inequality for the N-dimensional free membrane problem, J. Rational Mech. Anal.5 (1956), 633–636.MathSciNetGoogle Scholar

Copyright information

©  0251 V 2 2005

Authors and Affiliations

  1. 1.Fachbereich Mathematik und Informatik Institut für AnalysisMartin-Luther-Universität Halle-WittenbergHalleGermany

Personalised recommendations