Skip to main content
Log in

Modulus of continuity of harmonic functions

  • Published:
Journal d’Analyse Mathématique Aims and scope

Abstract

LetG be a bounded plane domain, the diameters of whose boundary components have a fixed positive lower bound. Letu be harmonic inG and continuous in the closureG ofG. Suppose that the modulus of continuity ofu on the boundary ofG is majorized by a function of a suitable type. We shall then obtain upper bounds for the modulus of continuity ofu inG. Further, we shall show that in some situations these estimates cannot be essentially improved. We shall also consider the same problem for certain bounded domains in space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Baernstein,Integral means, univalent functions and circular symmetrization, Acta Math.133 (1974), 139–169.

    Article  MathSciNet  Google Scholar 

  2. L. A. Caffarelli and D. Kinderlehrer,Potential methods in variational inequalities, J. Analyse Math.37 (1980), 285–295.

    MATH  MathSciNet  Google Scholar 

  3. M. Essén and K. Haliste, A problem of Burkholder and the existence of harmonic majorants of {ie29-1} in certain domains in Rd, Ann. Acad. Sci. Fenn. Ser. AI Math.9 (1984), 107–116.

    MATH  Google Scholar 

  4. S. Friedland and W. K. Hayman,Eigenvalue inequalities for the Dirichlet problem on spheres and the growth of subharmonic functions, Comment. Math. Helv.51 (1976), 133–161.

    Article  MATH  MathSciNet  Google Scholar 

  5. W. K. Hayman and P. B. Kennedy,Subharmonic Functions, Volume I, Academic Press, London-New York-San Francisco, 1976.

    MATH  Google Scholar 

  6. W. K. Hayman and A. Weitsman,On the coefficients and means of functions omitting values, Math. Proc. Cambridge Phil. Soc.77 (1975), 119–137.

    MATH  MathSciNet  Google Scholar 

  7. L. L. Helms,Introduction to Potential Theory, Wiley-Interscience, New York, 1969.

    MATH  Google Scholar 

  8. H. Lebesgue,Sur le problème de Dirichlet, Rend. Circ. Mat. Palermo24 (1907), 371–402.

    Article  MATH  Google Scholar 

  9. R. Nevanlinna,Analytic Functions, Springer-Verlag, Berlin-Heidelberg-New York., 1970.

    MATH  Google Scholar 

  10. L. A. Rubel, A. L. Shields and B. A. Taylor,Mergelyan sets and the modulus of continuity of analytic functions, J. Approx. theory15 (1975), 23–40.

    Article  MATH  MathSciNet  Google Scholar 

  11. M. Tsuji,Potential Theory in Modern Function Theory Maruzen, Tokyo, 1959.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Research partially supported by the U.S. National Science Foundation. AMS (1980) Classification. Primary 31A05.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hinkkanen, A. Modulus of continuity of harmonic functions. J. Anal. Math. 51, 1–29 (1988). https://doi.org/10.1007/BF02791117

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02791117

Keywords

Navigation