Israel Journal of Mathematics

, Volume 12, Issue 3, pp 249–256 | Cite as

The mean volume of boxes and cylinders circumscribed about a convex body

  • G. D. Chakerian


The mean volume of boxes circumscribed about a convex bodyK of given volume is a minimum whenK is a ball. This follows from a more general inequality, where the volume of circumscribed boxes is replaced by the product of quermassintegrals of the projections ofK on appropriate lower dimensional subspaces.


Convex Body Proper Motion Curly Bracket Grassmann Manifold Orthogonal Subspace 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. R. Chernoff,An area-width inequality for convex curves, Amer. Math. Monthly76 (1969), 34–35.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    H. Hadwiger,Vorlesungen über Inhalt, Oberfläche und Isoperimetrie, Berlin-Göttingen-heidelberg, 1957.Google Scholar
  3. 3.
    H. Knothe,Inversion of two theorems of Archimedes, Michigan Math. J.4 (1957), 53–56.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    K. Radziszewski,Sur une functionnelle dćfinie sur les ovales, Ann. Univ. Mariae Curie-Sklodowska, Sect. A.10 (1956), 57–59.MathSciNetGoogle Scholar
  5. 5.
    R. Schneider,The mean surface area of the boxes circumscribed about a convex body, Ann. Polon. Math.25 (1972), 325–328.MATHGoogle Scholar

Copyright information

© Hebrew University 1972

Authors and Affiliations

  • G. D. Chakerian
    • 1
  1. 1.University of CaliforniaDavis

Personalised recommendations