Advertisement

Lettere al Nuovo Cimento (1971-1985)

, Volume 39, Issue 17, pp 406–412 | Cite as

Do cross-sections get modified in nonpotential scattering theory?

  • R. Mignani
Article

Summary

We show that the theoretical expressions of the scattering cross-sections are expected to get modified when nonpotential forces are explicitly taken into account.

PACS. 03.65

Quantum theory quantum mechanics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Footnotes

  1. (1).
    SeeProceedings of the II Workshop on Lie-admissible Formulations, Hadronic J.,2, 1252 (1979);3, 1 (1979);Proceedings of the III Workshop on Lie-admissible Formulations, Hadronic J.,4, 608, 1161 (1981).Google Scholar
  2. (2).
    R. M. Santilli:Foundations of Theoretical Mechanics, Vol. II:Birkoffian Generalization of Hamiltonian Mechanics (Springer-Verlag, New York, N.Y. and Heidelberg, 1983).CrossRefMATHGoogle Scholar
  3. (3).
    SeeProceedings of the I International Conference on Nonpotential Interactions and their Lieadmissible Treatment, Hadronic J.,5, 245, 679, 1194, 1627 (1982);Proceedings of the I Workshop on Hadronic Mechanics, Hadronic J.,6, 1400 (1983).Google Scholar
  4. (4).
    H. C. Myung andR. M. Santilli:Hadronic J.,5, 1277 (1982).MathSciNetGoogle Scholar
  5. (5).
    H. C. Myung andR. M. Santilli:Hadronic J.,5, 1367 (1982).MathSciNetGoogle Scholar
  6. (6).
    R. M. Santilli:Lett. Nuovo Cimento,37, 337, 545 (1983);38, 509 (1983).MathSciNetCrossRefGoogle Scholar
  7. (7).
    M. Gasperini:Hadronic J.,6, 935, 1462 (1983). See alsoM. Nishioka:Hadronic J.,6, 1480 (1983).MathSciNetMATHGoogle Scholar
  8. (8).
    R. Mignani, H. C. Myung andR. M. Santilli:Hadronic J.,6, 1873 (1983).Google Scholar
  9. (9).
    R. Mignani:Hadronic J.,4, 2185 (1981).MathSciNetGoogle Scholar
  10. (10).
    R. Mignani:Hadronic J.,5, 1120 (1982).MathSciNetGoogle Scholar
  11. (11).
    SeeM. Reed andB. Simon:Methods of Modern Mathematical Physics, Vol. III:Scattering Theory (Academic Press, New York, N.Y., 1979).Google Scholar
  12. (12).
    H. C. Myung:A generalization of Hermitian and unitary operators on a Hilbert space, Hadronic J. (in press).Google Scholar

Copyright information

© Società Italiana di Fisica 1984

Authors and Affiliations

  • R. Mignani
    • 1
    • 2
    • 3
  1. 1.Dipartimento di Fisica, IUniversità di Roma «La Sapienza»RomaItalia
  2. 2.Istituto Nazionale di Fisica NucleareSezione di RomaItalia
  3. 3.Division of PhysicsThe Institute for Basic ResearchCambridgeU.S.A.

Personalised recommendations