Journal d’Analyse Mathématique

, Volume 26, Issue 1, pp 303–336 | Cite as

Banach algebra methods in renewal theory

  • Matts Essén


Unit Circle BANACH Algebra Compact Interval Continuous Homomorphism Renewal Theory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Beurling, Sur les intégrales de Fourier absolument convergentes et leur application à une transformation fonctionnelle. Neuvième congrès des mathématiciens scandinaves, Helsingfors, 1938.Google Scholar
  2. 2.
    J. Chover, P. Ney and S. Wainger, Aspects of renewal theory and Volterra equations, to appear.Google Scholar
  3. 3.
    Y. Domar, Harmonic analysis based on certain commutative Banach algebras.Acta Mathematica,96 (1956), 1–66.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    M. Essén, Studies on a convolution inequality.Arkiv för Matematik,5 (1963), 113–152.CrossRefGoogle Scholar
  5. 5.
    Th. W. Gamelin, Uniform algebras. Prentice-Hall 1969.Google Scholar
  6. 6.
    L. Hörmander, An introduction to complex analysis in several variables. Van Nostrand 1966.Google Scholar
  7. 7.
    L. H. Loomis, An introduction to abstract harmonic analysis. Van Nostrand 1953.Google Scholar
  8. 8.
    R. E. A. C. Paley and N. Wiener, Fourier transforms in the complex domain. Amer. Math. Soc., Colloquium Publ. 19, 1934.Google Scholar
  9. 9.
    W. Rudin, Fourier analysis on groups. Interscience 1962.Google Scholar
  10. 10.
    W. Rudin, Real and complex analysis, McGraw-Hill 1966.Google Scholar
  11. 11.
    F. Spitzer, Principles of randon walk. Van Nostrand 1964.Google Scholar
  12. 12.
    C. Stone, On moment generating functions and renewal theory.Annals of Mathematical Statistics,36 (1965), 1298–1301.CrossRefMathSciNetMATHGoogle Scholar
  13. 13.
    C. Stone and S. Wainger, One-sided error estimates in renewal theory.Journal d'Analyse Mathématique,20 (1967), 325–352.MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    J. Wermer, On a class of normed rings.Ark. Mat.,2 (1954), 537–551.MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    A. Zygmund, Trigonometric series. Cambridge 1959.Google Scholar

Copyright information

© Hebrew University of Jerusalem 1973

Authors and Affiliations

  • Matts Essén
    • 1
  1. 1.Division of MathematicsRoyal Institute of TechnologyStockholmSweden

Personalised recommendations