Journal d’Analyse Mathématique

, Volume 24, Issue 1, pp 101–150 | Cite as

A variational method for classes of meromorphic functions

  • John A. Pfaltzgraff
  • Bernard Pinchuk


Variational Method Step Function MEROMORPHIC Function Extremal Problem Simple Pole 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. M. Goluzin, On a variational method in the theory of analytic functions,Amer. Math. Soc., Translations (2)18 (1961), 1–14.MathSciNetGoogle Scholar
  2. 2.
    W. E. Kirwan, Extremal problems for the typically real functions,Amer. J. of Math.,88 (1966), 942–954.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    W. E. Kirwan, A note on extremal problems for certain classes of analytic functions,Proc. Amer. Math. Soc. 17 (1966), 1028–1031.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    R. J. Libera, Meromorphic close-to-convex functions,Duke Math. J.,32 (1965), 121–128.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    R. J. Libera and M. S. Robertson, Meromorphic close-to-convex functions,Michigan Math. J.,8 (1961), 167–175.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    H. Lonka and O. Tammi, On the use of step functions in extremal problems in the class with bounded boundary rotation,Ann. Acad. Sci. Fenn., Ser A, I. no 418 (1968).Google Scholar
  7. 7.
    V. Paatero, Über die Konforme Abbildung von Gebieten deren Ränder von beschränkter Drehung sind,Ann. Acad. Sci. Fenn., Ser. A33 (1931).Google Scholar
  8. 8.
    B. Pinchuk, Extremal problems in the class of close-to-convex functions,Trans. Amer. Math. Soc.,129 (1967), 466–478.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    B. Pinchuk, On starlike and convex functions of order α,Duke Math. J.,35 (1968), 721–734.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    B. Pinchuk, A variational method for functions of bounded boundary rotation,Trans. Amer. Math. Soc.,138 (1969), 107–113.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Ch. Pommerenke, Über einige Klassen meromorpher schlichter Funktionen,Math. Zeit.,78 (1962), 263–284.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    M. S. Robertson, On the theory of univalent functions,Annals of Math.,37 (1936), 374–408.CrossRefGoogle Scholar
  13. 13.
    W. Royster, Convex meromorphic functions, MacIntyre Memorial Volume, Ohio University, Athens, Ohio, (to appear).Google Scholar
  14. 14.
    M. H. Stone, Linear transformations in Hilbert space,Amer. Math. Soc. Colloquium Publications Vol. XV, New York, N. Y. (1932).Google Scholar
  15. 15.
    J. Zamorski, About the extremal spiral schlicht functions,Ann. Polonici Math.,9 (1961), 265–273.MATHMathSciNetGoogle Scholar

Copyright information

© Journal d'Analyse Mathématique (B. A. and V. Amirà) 1971

Authors and Affiliations

  • John A. Pfaltzgraff
    • 1
    • 2
  • Bernard Pinchuk
    • 3
  1. 1.University of North Carolina at Chapel HillChapel Hill
  2. 2.Princeton UniversityPrinceton
  3. 3.The Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations