Journal d’Analyse Mathématique

, Volume 58, Issue 1, pp 135–151 | Cite as

Asymptotic properties of eigenfunctions— the hyperbolic plane

  • Harold Donnelly


Asymptotic Property Formal Power Series Essential Spectrum Hyperbolic Plane Real Zero 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. Y. Cheng,Eigenfunctions and nodal sets, Comm. Math. Helv.51 (1976), 43–55.MATHCrossRefGoogle Scholar
  2. [2]
    R. Courant and D. Hilbert,Methods of Mathematical Physics, Vol. I, Interscience, New York, 1953.Google Scholar
  3. [3]
    H. Donnelly,On the essential spectrum of a complete Riemannian manifold, Topology20 (1981), 1–14.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    E. Erdélyi, ed.,Higher Transcendental Functions, Vol. I, II, Bateman manuscript project, McGraw-Hill, New York, 1953.Google Scholar
  5. [5]
    P. Hartman,Ordinary Differential Equations, Birkhäuser, Boston, 1982.MATHGoogle Scholar
  6. [6]
    F. Hildebrand,Advanced Calculus for Applications, Prentice Hall, Englewood Cliffs, 1962.Google Scholar
  7. [7]
    M. Hoffman-Ostenhof, T. Hoffman-Ostenhof and J. Swetina,Continuity and nodal properties of 2-dimensional Schrödinger equations, Duke Math. J.,53 (1986), 271–306.CrossRefMathSciNetGoogle Scholar
  8. [8]
    L. Hörmander,Linear Partial Differential Operators, Springer, New York, 1963.MATHGoogle Scholar

Copyright information

©  0246 V 2 1992

Authors and Affiliations

  • Harold Donnelly
    • 1
  1. 1.Department of MathematicsPurdue UniversityWest LafayetteUSA

Personalised recommendations