Journal d’Analyse Mathématique

, Volume 58, Issue 1, pp 25–37 | Cite as

Decay and regularity for the schrödinger equation

  • Matania Ben-artzi
  • Sergiu Klainerman


Consider the Schrödinger equation {fx25-1}.

The following estimates are proved: (A) IfV≡0 then for any 0≤α<1/2, {fx25-2}, and for α=1/2,s>1/2, {fx25-3} (B) If |V(x)|≤C(1+|x|2)−1−δ, δ>0, then (if 0 is neither an eigenvalue nor a resonance of −Δ+V), {fx25-4}.


Schrodinger Equation Schr6dinger Equation Limit Absorption Principle Spectral Family Galilean Group 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    M. Ben-Artzi and A. Devinatz,The limiting absorption principle for partial differential operators, Memoirs AMS #364,66 (1987).Google Scholar
  2. [2]
    M. Ben-Artzi and A. Devinatz,Local smoothing and convergence properties of Schrödinger-type equations, J. Funct. Anal.101 (1991), 231–254.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    P. Constantin and J. C. Saut,Local smoothing properties of Schrödinger equations, Indiana Univ. Math. J.38 (1989), 791–810.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    J. L. Journé, A. Soffer and C. D. Sogge,Decay estimates for Schrödinger operators, Comm. Pure Appl. Math.44 (1991), 573–604.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    T. Kato and K. Yajima,Some examples of smooth operators and the associated smoothing effect, Rev. Math. Phys.1 (1989).Google Scholar

Copyright information

©  0246 V 2 1992

Authors and Affiliations

  • Matania Ben-artzi
    • 1
  • Sergiu Klainerman
    • 2
  1. 1.Institute of MathematicsThe Hebrew University of JerusalemJerusalemIsrael
  2. 2.Department of MathematicsPrinceton UniversityPrincetonUSA

Personalised recommendations