Bulletin of Materials Science

, Volume 21, Issue 6, pp 445–450 | Cite as

Si+ and N+ ion implantation for improving blood compatibility of medical poly(methyl methacrylate)

  • D J Li
  • F Z Cui


Si+ and N+ ion implantation into medical poly(methyl methacrylate) (PMMA) were performed at an energy of 80 keV with fluences ranging from 5×1012 to 5×1015 ions/cm2 at room temperature to improve blood compatibility. The results of the blood contacting measurementsin vitro showed that the anticoagulability and anticalcific behaviour on the surface morphology were enhanced after ion implantation. No appreciable change in the surface morphology was detected by scanning electron microscopy (SEM). X-ray photoelectron spectroscopy (XPS) analysis indicated that ion implantation broke some original chemical bonds on the surface to form some new Si- and N-containing groups. These results were considered responsible for the enhancement in the blood compatibility of PMMA.


Ion implantation poly(methyl methacrylate) blood compatibility 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Courtney J M, Sundaram S and Forbes C D 1993Management of bleeding disorders in surgical practice (eds) C D Forbes and A Cushieri (Oxford: Blackwell Scientific) p. 236Google Scholar
  2. Courtney J M, Lamba N M K, Sundaram S and Forbes C D 1994Biomaterials 15 737CrossRefGoogle Scholar
  3. Dearnaly G, Freeman J H, Nelson R S and Stephen J 1973Ion implantation (Amsterdam: North Holland)Google Scholar
  4. Forbes C D and Courtney J M 1994Haemostasis and thrombosis (eds) A L Bloom, C D Forbes, D P Thomas and E G D Tuddenham (Edinburgh: Churchill Livingstone) vol. 2, p. 1301Google Scholar
  5. Ikada Y 1994Biomaterials 15 725CrossRefGoogle Scholar
  6. Israelachvili J 1991Intermolecular and surface forces (New York: Academic)Google Scholar
  7. Iwaki M 1989CRC Crit. Rev. Solid State Mater. Sci. 15 473CrossRefGoogle Scholar
  8. Koh S K, Choi W K, Cho J S, Song S K, Kim Y M and Jung H J 1996J. Mater. Res. 11 2933Google Scholar
  9. Lhoest J B, Dewez J L and Bertrand P 1995Nucl. Instrum. Meth. B105 322Google Scholar
  10. Li D J and Zhao J 1994aChin. Phys. Lett. 11 87Google Scholar
  11. Li D J and Zhao J 1994bAppl. Surf. Sci. 78 195CrossRefGoogle Scholar
  12. Li D J and Zhao J 1995J. Adhesion Sci. Technol. 9 1249Google Scholar
  13. Li D J, Zhao J, Gu H, Lu M, Ding F and Zhang Q 1993Nucl. Instrum. Meth. B82 57Google Scholar
  14. Li D J, Cui F Z, Feng Q L and Zhao J 1997Chin. Phys. Lett. 14 531CrossRefGoogle Scholar
  15. Murabayashi S and Nose Y 1986Artif. Organs 10 114Google Scholar
  16. Mustard J M and Packham M A 1997Br. Med. Bull. 33 187Google Scholar
  17. Nakao A, Iwaki M, Sakairi H and Terasima K 1992Nucl. Instrum. & Meth. B65 352CrossRefGoogle Scholar
  18. Nakao A, Kaibara M, Iwaki M, Suzuki Y and Kusakabe M 1996Surf. Inter. Anal. 24 252CrossRefGoogle Scholar
  19. Ratnoff O C and Forbes C D 1984Disorders of haemostasis (London: Grune and Stratton)Google Scholar
  20. Suzuki Y, Kusakabe M and Iwaki M 1991Nucl. Instrum. & Meth. B59/60 1300Google Scholar
  21. Suzuki Y, Kusakabe M, Kaibara M, Iwaki M, Sasabe H and Nishisaka T 1994Nucl. Instrum. & Meth. B91 588Google Scholar

Copyright information

© Indian Academy of Sciences 1998

Authors and Affiliations

  • D J Li
    • 1
  • F Z Cui
    • 1
    • 2
  1. 1.State Key Lab. of Surface Modification by Three BeamDalian University of TechnologyDalianP.R. China
  2. 2.Department of Materials Science and EngineeringTsinghua UniversityBeijingP.R. China

Personalised recommendations