Journal d’Analyse Mathématique

, Volume 83, Issue 1, pp 151–182 | Cite as

Homogenization of oscillating boundaries and applications to thin films

  • Nadia Ansini
  • Andrea Braides


Open Subset Integral Representation Energy Density Compactness Result Young Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    G. Anzellotti, S. Baldo and D. Percivale,Dimension-reduction in variational problems, asymptotic development in Γ-convergence and thin structures in elasticity, Asymptotic Anal.9 (1994), 61–100.MATHMathSciNetGoogle Scholar
  2. [2]
    K. Bhattacharya and A. Braides,Thin films with many small cracks, Preprint, SISSA, 1999.Google Scholar
  3. [3]
    K. Bhattacharya and R. D. James,A theory of thin films of martensitic materials with applications to microactuators, J. Mech. Phys. Solids47 (1999), 531–576.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    A. Braides,Homogenization of some almost periodic functional, Rend. Accad. Naz. Sci. XL103 (1985), 313–322.MathSciNetGoogle Scholar
  5. [5]
    A. Braides, Γ-convergence for Beginners, Oxford University Press, Oxford, to appear.Google Scholar
  6. [6]
    A. Braides and A. Defranceschi,Homogenization of Multiple Integrals, Oxford University Press, Oxford, 1998.MATHGoogle Scholar
  7. [7]
    A. Braides and I. Fonseca,Brittle thin films, Appl. Math. Optin., to appear.Google Scholar
  8. [8]
    A. Braides, I. Fonseca and G. Francfort,3D-2D asymptotic analysis for inhomogeneous thin films, Indiana Univ. Math. J., to appear.Google Scholar
  9. [9]
    R. Brizzi and J. P. Chalot,Boundary homogenization and Neuman boundary value problems, Ricerche Mat.46 (1997), 341–387.MATHMathSciNetGoogle Scholar
  10. [10]
    G. Buttazzo,Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations, Longman, Harlow, 1989.MATHGoogle Scholar
  11. [11]
    D. Caillerie,Thin elastic and periodic plates, Math. Methods Appl. Sci.6 (1984), 159–191.MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    C. Castaign and M. Valadier,Convex Analysis and Measurable Multifunctions, Springer-Verlag, Berlin, 1977.Google Scholar
  13. [13]
    G. Dal Maso,An Introduction to Γ-convergence, Birkhäuser, Boston, 1993.Google Scholar
  14. [14]
    E. De Giorgi and T. Franzoni,Su un tipo di convergenza variazionale, Atti Accad. Naz. Lincei Rend. Cl. Sci. Mat. Fis. Natur.58 (1975), 842–850.MATHGoogle Scholar
  15. [15]
    L. C. Evans and R. F. Gariepy,Measure Theory and Fine Properties of Functions, CRC Press, Ann Harbor, 1992.MATHGoogle Scholar
  16. [16]
    I. Fonseca and G. Francfort,3D-2D asymptotic analysis of an optimal design problem for thin films, J. Reine Angew. Math.505 (1998), 173–202.MATHMathSciNetGoogle Scholar
  17. [17]
    I. Fonseca, S. Müller and P. Pedregal,Analysis of concentration and oscillation effects generated by gradients, SIAM J. Math. Anal.29 (1998), 736–756.MATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    G. A. Francfort and S. Müller,Combined effects of homogenization and singular perturbations in elasticity, J. Reine Angew. Math.454 (1994), 1–35.MATHMathSciNetGoogle Scholar
  19. [19]
    R. V. Kohn and M. Vogelius,A new model for thin plates with rapidly varying thickness. II: A convergence proof, Quart. Appl. Math.43 (1985), 1–22.MATHMathSciNetGoogle Scholar
  20. [20]
    H. Le Dret and A. Raoult,The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity, J. Math. Pures Appl.74 (1995), 549–578.MATHMathSciNetGoogle Scholar
  21. [21]
    P. Marcellini,Periodic solutions and homogenization of nonlinear variational problems, Ann. Mat. Pura Appl.117 (1978), 481–498.MathSciNetGoogle Scholar
  22. [22]
    S. Müller,Homogenization of nonconvex integral functionals and cellular elastic materials, Arch. Rational Mech. Anal.99 (1987), 189–212.MATHCrossRefMathSciNetGoogle Scholar
  23. [23]
    Y. C. Shu,Heterogeneous thin films of martensitic materials, Arch. Rational Mech. Anal.153 (2000), 39–90.MATHCrossRefGoogle Scholar

Copyright information

© The Hebrew University Magnes Press 2001

Authors and Affiliations

  1. 1.SISSATriesteItaly

Personalised recommendations