Journal d’Analyse Mathématique

, Volume 59, Issue 1, pp 45–50 | Cite as

High energy resolvent estimates for Schrödinger operators in Besov spaces

  • Arne Jensen


Banach Space Besov Space Helmholtz Equation Linear Partial Differential Operator Resolvent Estimate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    S. Agmon,Lectures on Exponential Decay of Solutions of second-Order Elliptic Equations: Bounds on Eigenfunctions of N-Body Schrödinger Operators, Volume 29 ofMathematical Notes, Princeton University Press, 1982.Google Scholar
  2. [2]
    S. Agmon,A representation theorem for Solutions of the Helmholtz equation and resolvent estimates for the Laplacian, inAnalysis (P. H. Rabinowitz and E. Zehnder, eds.), Academic Press, Boston, 1990, pp. 39–76.Google Scholar
  3. [3]
    S. Agmon and L. Hörmander,Asymptotic properties of solutions of differential equation with simple characteristeics, J. Analyse Math.30 (1976), 1–38.MATHMathSciNetCrossRefGoogle Scholar
  4. [4]
    L. Hörmander,The Analysis of Linear Partial Differential Operators, Volume II:Differential Operators with Constant Coefficients, Springer-Verlag, Berlin-Heidelberg, 1983.Google Scholar
  5. [5]
    W. Jäger,Das asymptotische Verhalten von Lösungen eines Typs von Differential Gleichung, Math. Z.291 (1969), 26–36.CrossRefGoogle Scholar
  6. [6]
    A. Jensen, in preparation.Google Scholar
  7. [7]
    A. Jensen,Propagation estimates for Schrödinger-type operators, Trans. Am. Math. Soc.291 (1985), 129–144.MATHCrossRefGoogle Scholar
  8. [8]
    A. Jensen,High energy resolvent estimates for generalized many-body Schrödinger operators, Publ. RIMS, Kyoto Univ.25 (1989), 155–167.MATHGoogle Scholar
  9. [9]
    A. Jensen, E. Mourre and P. Perry,Commutator estimates and resolvent smoothness in quantum scattering theory, Ann. Inst. H. Poincaré, Sect. A (N. S.)41 (1984), 207–225.MATHMathSciNetGoogle Scholar
  10. [10]
    A. Jensen and P. Perry,Commutator methods and Besov space estimates for Schrödinger operators, J. Operator Theory14 (1985), 181–188.MATHMathSciNetGoogle Scholar
  11. [11]
    J.-J. Lions,Sur une classe d'espaces d'interpolation, Publ. IHES19 (1964), 5–68.MATHGoogle Scholar
  12. [12]
    E. Mourre,Absence of singular continuous spectrum for certian self-adjoint operators, Comm. Math. Phys.78 (1981), 391–408.MATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    E. Mourre,Opérateurs conjugués et propriétés de propagation, Comm. Math. Phys.91 (1983). 279–300.MATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    J. Peetre,New Thoughts on Besov Spaces, Duke University Mathematics Department, Durham, North Carolina, USA, 1976.MATHGoogle Scholar

Copyright information

© The Magnes Press, The Hebrew University 1992

Authors and Affiliations

  • Arne Jensen
    • 1
  1. 1.Department of Mathematics and Computer Science Institute for Electronic SystemsAalborg UniversityAalborg ØDenmark

Personalised recommendations