Advertisement

Journal d’Analyse Mathématique

, Volume 33, Issue 1, pp 12–38 | Cite as

On monosplines with odd multiplicity of least norm

  • R. B. Barrar
  • H. L. Loeb
Article

Keywords

Approximation Theory Spline Function Minimal Norm Uniform Norm Analyse Math 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. B. Barrar and H. L. Loeb,On extended varisolvent families, J. Analyse Math.26 (1973), 243–254.MATHMathSciNetGoogle Scholar
  2. 2.
    R. B. Barrar and H. L. Loeb,Optimal integration formulas for analytic functions, Bull. Amer. Math. Soc.79 (1973), 1296–1298.MATHMathSciNetGoogle Scholar
  3. 3.
    R. B. Barrar and H. L. Loeb,Spline functions with free knots as the limit of varisolvent families, J. Approximation Theory12 (1974), 70–77.MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    R. B. Barrar and H. L. Loeb,Multiple zeros and applications to optimal linear functions, Numer. Math.25 (1976), 251–262.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    R. B. Barrar and H. L. Loeb,On a nonlinear characterization problem for monosplines, J. Approximation Theory18 (1976), 220–240.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    R. B. Barrar and H. L. Loeb,On the convergence of smooth monosplines to polynomial monosplines, to appear in Proc. Symp. on Approximation Theory, Austin, Texas, 1976.Google Scholar
  7. 7.
    R. B. Barrar, H. L. Loeb and H. Werner,On the existence of optimal integration formulas for analytic functions, Numer. Math.23 (1974), 105–117.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    D. Braess,Chebyshev approximation by spline functions with free knots, Numer. Math.17 (1971), 357–366.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    D. Braess,Chebyshev approximation by γ-polynomials, J. Approximation Theory9 (1973), 20–43.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    A. S. Cavaretta, Jr.,Oscillatory and zero properties for perfect splines and monosplines, J. Analyse Math.28 (1975), 41–59.MATHGoogle Scholar
  11. 11.
    C. Fitzgerald and L. L. Schumaker,A differential equation approach to interpolation of extremal points, J. Analyse Math.22 (1969), 117–134.MATHMathSciNetGoogle Scholar
  12. 12.
    E. Isaacson and H. B. Keller,Analysis of Numerical Methods, John Wiley and Sons, Inc., New York, 1966.MATHGoogle Scholar
  13. 13.
    R. S. Johnson,On monosplines of least deviation, Trans. Amer. Math. Soc.96 (1960), 458–477.CrossRefMathSciNetGoogle Scholar
  14. 14.
    S. Karlin,Total Positivity, Stanford University Press, Stanford, 1968.MATHGoogle Scholar
  15. 15.
    S. Karlin,On a class of best nonlinear approximation problems and extended monosplines, inStudies in Spline Functions and Approximation Theory, S. Karlin, C. Micchelli, A. Pinkus and I. J. Schoenberg (eds.), Academic Press, New York, 1976, pp. 19–59.Google Scholar
  16. 16.
    S. Karlin,A global improvement theorem for polynomial monosplines, inStudies in Spline Functions and Approximation Theory, S. Karlin, C. Micchelli, A. Pinkus and I. J. Schoenberg (eds.), Academic Press, New York, 1976, pp. 67–74.Google Scholar
  17. 17.
    S. Karlin and A. Pinkus,Gaussian quandrature formulae with multiple nodes, inStudies in Spline Functions and Approximation Theory, S. Karlin, C. Micchelli, A. Pinkus and I. J. Schoenberg (eds.), Academic Press, New York, 1976, pp. 113–137.Google Scholar
  18. 18.
    S. Karlin and L. L. Schumaker,The fundamental theorem of algebra for Tchebysheffian monosplines, J. Analyse Math.20 (1967), 233–270.MATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    G. Meinardus,Approximation of Functions: Theory and Numerical Methods, Springer-Verlag, New York, 1967.MATHGoogle Scholar
  20. 20.
    C. Micchelli,The fundamental theorem of algebra for mosplines with multiplicities, inLinear Operators and Approximation, P. L. Butzer et al. (eds.), Birkhauser Verlag, Basel, 1972, pp. 419–430.Google Scholar
  21. 21.
    J. R. Rice,The Approximation of Functions, Vol. 2, Addison-Wesley Publishing Company, Reading, Massachusetts, 1969.MATHGoogle Scholar
  22. 22.
    I. J. Schoenberg and Z. Ziegler,On cardinal monosplines of least L -norm on the real axis, J. Analyse Math.23 (1970), 409–436.MATHMathSciNetGoogle Scholar
  23. 23.
    L. L. Schumaker,Uniform approximation by Chebyshev spline functions, II, Free knots, SIAM J. Numer. Anal.5 (1968), 647–656.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Hebrew University of Jerusalem 1978

Authors and Affiliations

  • R. B. Barrar
    • 1
  • H. L. Loeb
    • 1
  1. 1.Department of MathematicsUniversity of OregonEugeneUSA

Personalised recommendations