Advertisement

Biological Trace Element Research

, Volume 51, Issue 1, pp 23–30 | Cite as

A case-control study on selenium, zinc, and copper in plasma and hair of subjects affected by breast and lung cancer

  • Lino Piccinini
  • Paola Borella
  • Annalisa Bargellini
  • Cristina Incerti Medici
  • Alessandra Zoboli
Article

Abstract

The purpose of our study was to investigate the relationship between plasma and hair levels of Se, Zn, and Cu, and cancer. We selected a total of 66 patients affected by either breast (38) or lung (28) cancer. They entered into the study at the onset of disease, and before any chemical or radiotherapy. Controls were randomly selected among healthy people and were matched for sex, age, smoking habits, and residence. In the group of breast cancer, a significant decrease in hair Se was found compared to controls (p<0.01), whereas plasma Se was only slightly decreased. No difference between cases and controls was detected in both hair and plasma levels of Zn and Cu. Subjects who developed lung cancer were significantly lower in hair Zn (p<0.05) and Cu (p<0.01) than controls, whereas there was no difference with regard to Se. In addition, plasma Cu of these patients was increased as compared to controls.

Index Entries

Selenium zinc copper breast cancer lung cancer plasma hair 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. Guillard, M. H. Biasis-Sauvetre, D. Reiss, and J. Gombert, Physiologie et pathologie du zinc,Pathol. Biol. 28, 469–478 (1980).PubMedGoogle Scholar
  2. 2.
    S. R. Marklund, N. G. Westman, E. Lundgren, and G. Ross, Copper and zinc containing superoxidedismutase, catalase and glutathione peroxidase in normal and neoplastic human cell lines and normal human tissue,Cancer Res. 42, 1955–1961 (1982).PubMedGoogle Scholar
  3. 3.
    B. Halliwell and M. C. Gutteridge, Oxygen toxicity, oxygen radicals, transitional metals and disease,Biochem. J. 219, 1–14 (1984).PubMedGoogle Scholar
  4. 4.
    M. Schillaci, S. E. Martin, and J. A. Milner, The effects of dietary selenium on the biotrasformation of 7,12-di-methylbenz(α)anthracene,Mutat. Res. 101, 31–37 (1982).PubMedCrossRefGoogle Scholar
  5. 5.
    N. M. Jacobs, Selenium inhibition of 1,2-dimethylydrazine-induced colon carcino-genesis.Cancer Res. 43, 1646–1649 (1983).PubMedGoogle Scholar
  6. 6.
    J. A. Milner, Effect of selenium on virally induced and trasplantable tumor models,Federation Proc. 44, 2568–2571 (1985).Google Scholar
  7. 7.
    R. A. Le Boeuf and W. G. Hoekstra, Changes in cellular glutathione levels possible relation to selenium-mediate anticarcinogenesis,Federation Proc. 44, 2563–2566 (1986).Google Scholar
  8. 8.
    S. Y. Yu, Y. J. Zhu, W. G. Li, and C. Hou, Chemoprevention trial of primary liver cancer with selenium supplementation in Quidong country of China.Metal Ions Biol. Med. 497–500 (1990).Google Scholar
  9. 9.
    P. Travaglini, P. Moriondo, and E. Togni, Effect of oral zinc administration on prolactine and thymulein circulating levels in patients with chronic renal failure,J. Clin. Endocrinol. Metab. 68, 186–190 (1989).PubMedCrossRefGoogle Scholar
  10. 10.
    M. R. Fenton and J. P. Burke, Subcellular zinc distribution in livers and tumors of plasmocytoma-bearing mice.Nutr. Res. 5, 1383–1391 (1985).CrossRefGoogle Scholar
  11. 11.
    R. J. Shamberger, E. Rukovena, and A. K. Gongfield, Antioxidant and cancer. I: selenium in the blood of normals and cancer patients,J. Natl. Cancer Inst. 50, 863–870 (1973).PubMedGoogle Scholar
  12. 12.
    R. F. Burk, Selenium and cancer: meaning of serum selenium levels,J. Nutr. 116, 1584–1586 (1986).PubMedGoogle Scholar
  13. 13.
    J. A. Milner and M. E. Rice, Selenium and tumorigenesis, inSelenium in Biology and Medicine, Part B, G. F. Combs, ed., Rheinhold, New York, pp. 1034–1043 (1987).Google Scholar
  14. 14.
    B. N. Gray, S. L. Marklund, and R. Barnard, Use of serum copper/zinc ratio in patients with large bowel cancer.J. Surg. Oncol. 21, 230–232 (1982).PubMedCrossRefGoogle Scholar
  15. 15.
    I. Capel, M. Pinnock, D. Williams, and I. W. Hanham, The serum levels of some trace and bulk elements in cancer patients,Oncology 39, 38–41 (1982).PubMedGoogle Scholar
  16. 16.
    S. Gozda, A. D. Cavdar, A. Arcasoy, and N. Akkar, Serum copper and zinc levels and copper/zinc ratio in pediatric non Hodgkin’s lymphoma,Hacta Haematol 67, 67–70 (1982).CrossRefGoogle Scholar
  17. 17.
    A. Adler, B. Safai, Y. Wang, and G. A. Menedev-Botetc, Serum zinc levels in patients with basal-cell carcinoma,J. Dermatol. Surg. Oncol. 7, 911–914 (1981).PubMedGoogle Scholar
  18. 18.
    Y. Aldor, N. Walach, D. Modai, and Y. Horn, Zinc and copper levels in erythrocytes, plasma and whole blood in cancer patients,Klin. Wochenschr. 60, 375–377 (1982).PubMedCrossRefGoogle Scholar
  19. 19.
    J. S. Morris, M. J. Stampfer, and W. C. Willet, Dietary selenium in humans: toenails as an indicator,Biol. Trace Elem. Research 5, 529–537 (1983).Google Scholar
  20. 20.
    P. A. H. Van Noord, H. J. A. Collette, and M. J. Maas, Selenium levels in nails of premenopausal breast cancer patients assessed prediagnostically in a cohort nested case-referent study among women screened in the DOM Project,Int. J. Epidemiol. 16, 318–322 (1987).PubMedCrossRefGoogle Scholar
  21. 21.
    P. Van’t Veer, R. P. J. Van Der Wielen, and J. F. Kok, Selenium in diet blood and toenails in relation to breast cancer: a case-control study.Am. J. Epidemiol. 131, 987–990 (1990).Google Scholar
  22. 22.
    A. Taylor, Usefulness of measurements of trace elements in hair,Ann. Clin. Biochem. 23, 364–378 (1986).PubMedGoogle Scholar
  23. 23.
    S. Caroli, O. Senofonte, N. Violante, L. Fornarelli, and A. Powar, Assessment of reference values for elements in hair of urban normal subjects.Microchemical J. 46, 174–183 (1992).CrossRefGoogle Scholar
  24. 24.
    P. Borella, S. Rovesti, E. Caselgrandi, and A. Bargellini, Quality control in hair analysis: a sistematic study on washing procedures for trace element determinations,Mikrochimica Acta,705, 1–10 (1995).Google Scholar
  25. 25.
    W. C. Hawkes, C. C. Willhite, K. A. Craig, S. T. Omaye, D. N. Cox, W. N. Choy, and A. G. Hendrickx, Effects of excess selenomethionine on selenium status indicators in pregnant long-tailed Macaques (Macaca fascicularis),Biol. Trace Element Res. 35, 281–297 (1992).CrossRefGoogle Scholar
  26. 26.
    E. E. Olson, I. S. Palmer, and E. E. Cary, Methods of the official fluorimetric. Method for selenium in plants,J. AOAC 58, 117–121 (1975).Google Scholar
  27. 27.
    G. Vivoli, M. Bergomi, P. Borella, G. Fantuzzi, and E. Caselgrandi, Cadmium in blood, urine and hair related to human hypertension,J. Trace Elem. Electrolytes Health Dis. 3, 139–145 (1989).PubMedGoogle Scholar
  28. 28.
    H. Krsnjavi and D. Beker, Selenium in serum as possible parameter of assesment of breast disease,Breast Cancer Res. Tr 16, 57–61 (1990).CrossRefGoogle Scholar
  29. 29.
    F. Mayer and R. Verreault, Erythrocyte selenium and breast cancer risk,Am. J. Epidemiol. 125, 917–922 (1987).Google Scholar
  30. 30.
    F. Cavallo, M. Gerber, E. Marubini, S. Richardson, A. Barbieri, A. Costa, A. DeCarli, and H. Pujol, Zinc and copper in breast cancer. A joint study in Northern Italy and Southern France,Cancer 67, 738–745 (1991).PubMedCrossRefGoogle Scholar
  31. 31.
    J. A. Garofalo, H. Ashikari, M. L. Lesser, C. Menendez-Botet, S. Cunningham-Rundles, M. K. Schwartz, and R. A. Good, Serum zinc, copper and the Cu/Zn ratio in patients with benign and malignant breast lesions,Cancer 46, 2682–2685 (1980).PubMedCrossRefGoogle Scholar
  32. 32.
    J. T. Salonen, G. Alfthan, J. K. Huttunen, and P. Puska, Association between serum selenium and the risk of cancer,Am. J. Epidemiol. 120, 342–349 (1984).PubMedGoogle Scholar
  33. 33.
    G. W. Comstock, T. L. Bush, and K. Helzlsouer, Serum retinol, beta-carotene, vitamin E and selenium as related to subsequent cancer of specific sites,Am. J. Epidemiol. 135, 115–121 (1992).PubMedGoogle Scholar
  34. 34.
    P. A. van den Brandt, R. A. Goldbohm, P. Van’t Veer, P. Bode, E. Dorant, R. J. J. Hermus, and F. Sturmans, A prospective cohort study on selenium status and the risk of lung cancer,Cancer Res. 53, 4860–4865 (1993).PubMedGoogle Scholar
  35. 35.
    B. F. Issel, B. U. Mc Fayden, and E. T. Gum, Serum zinc levels in lung cancer patients,Cancer 47, 1845–1848 (1981).CrossRefGoogle Scholar
  36. 36.
    B. Rosof and H. Spencer, Tissue distribution of zinc65 in tumor tissue and normal tissue in man,Nature 207, 652–656 (1965).CrossRefGoogle Scholar
  37. 37.
    J. I. Allen, E. Bell, and M. G. Boosalis, Association between urinary zinc excretion and lymphocyte dysfunction in patients with lung cancerAm. J. Med. 79, 209–212 (1985).PubMedCrossRefGoogle Scholar
  38. 38.
    T. Crea, V. Guerrin, F. Ortega, and P. Harteman, Zinc et systeme immunitaire,Ann. Med. Interne 141, 447–451 (1990).Google Scholar
  39. 39.
    World Health Organisation, Selenium, Environmental Health Criteria, H58, WHO, Geneva, 1987.Google Scholar
  40. 40.
    S. L. Rizk and H. H. Sky-Peck, Comparison between concentration of trace elements in normal and neoplastic human breast tissue,Cancer Res. 44, 5390–5394 (1984).PubMedGoogle Scholar
  41. 41.
    C. Di Ilio, P. Sacchetta, G. Del Boccio, G. La Rovere, and G. Federici, Gluthatione peroxidase, glutathione S-transferase and glutathione reductase activity in normal and neoplastic human breast tissues,Cancer Lett. 29, 37 (1985).PubMedCrossRefGoogle Scholar
  42. 42.
    C. P. Siegers, H. Bose-Younes, E. Thies, R. Hoppenkaps, and M. Younes, Glutathione and GSH-dependent enzymes in the tumorous and non tumorous mucosa of the human colon and rectum,J. Cancer Res. Clin. Oncol. 107, 238–240 (1984).PubMedCrossRefGoogle Scholar
  43. 43.
    C. Di Ilio, G. Del Boccio, R. Casaccia, A. Aceto, F. Di Giacomo, and G. Federici, Selenium level and glutathione dependent enzymes activities in normal and neoplastic human lung tissues,Carcinogenesis 8, 281–285 (1988).CrossRefGoogle Scholar
  44. 44.
    W. Dewis and W. J. Pories, Inhibition of spectrum of animal tumors by dietary zinc deficiency,J. Natl. Cancer Inst. 48, 375–381 (1972).Google Scholar
  45. 45.
    B. L. Mills, W. L. Broghamer, P. J. Higgins, and R. D. Lindeman, A specific dietary zinc requirement for the growth of the Walker 256/M1 tumor in the rat,Am. J. Clin. Nutr. 34, 1661–1669 (1981).PubMedGoogle Scholar
  46. 46.
    B. L. Mills, W. L. Broghamer, P. J. Higgins, and R. D. Lindeman, Inhibition of tumor growth by zinc depletion of rats,J. Nutr. 114, 746–756 (1984).PubMedGoogle Scholar
  47. 47.
    A. G. Fuchs, R. Mariotto, and E. S. De Lustig, Serum and tissue copper content in two mammary adenocarcinomas with different biological behaviour,Eur. J. Cancer Clin. Oncol. 22, 1347–1352 (1986).PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1996

Authors and Affiliations

  • Lino Piccinini
    • 1
  • Paola Borella
    • 2
  • Annalisa Bargellini
    • 2
  • Cristina Incerti Medici
    • 2
  • Alessandra Zoboli
    • 1
  1. 1.Department of Medical, Oncological and Radiological Sciences, Section of Internal Medicine, Oncology and EmatologyUniversity of ModenaItaly
  2. 2.Department of Biomedical Sciences, Section of Hygiene and MicrobiologyUniversity of ModenaItaly

Personalised recommendations