Biological Trace Element Research

, Volume 47, Issue 1–3, pp 321–326 | Cite as

Induction of lipid peroxidation and alteration of glutathione redox status by endosulfan

  • F. Hincal
  • A. Gürbay
  • B. Giray
Part X Environment and Side Effects of Drugs


The oxidant stress-inducing effects of endosulfan, a chlorinated hydrocarbon insecticide of the cyclodiene group, have been examined following ig administration of single and repeated doses. A single dose of 30 mg/kg (∼30% LD50) endosulfan significantly (p<0.001) increased the TBARS and, hence, the lipid peroxidation in cerebral and hepatic tissues of rats. Administration of endosulfan with doses of 10 or 15 mg/kg/d for 5 d has also induced lipid peroxidation significantly (p<0.05). The same doses caused a significant alteration in glutathione redox status of cerebral and hepatic tissues, where total glutathione and oxidized glutathione were measured by an enzymatic cycling procedure. Selenium levels were also determined and compared with controls. With repeated doses, oxidant stress was more pronounced in cerebral tissue, where endosulfan shows a GABA-antagonistic activity. The possible relationship between the neurotoxicity of endosulfan and its oxidant stress-inducing effect was discussed.

Index Entries

Cyclodiene insecticide endosulfan induction of lipid peroxidation alteration of glutathione tissue selenium levels in rats GABA antagonistic effect 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Lang and P. Maier,Biochem. Biophys. Res. 138, 24 (1986).CrossRefGoogle Scholar
  2. 2.
    I. T. Numan, M. Q. Hassan, and S. J. Stohs,Arch. Environ. Contam. Toxicol. 19, 302 (1990).PubMedCrossRefGoogle Scholar
  3. 3.
    F. Tietze,Anal. Biochem. 27, 502 (1969).PubMedCrossRefGoogle Scholar
  4. 4.
    G. A. Hazelton, and C. A. Lang,Biochem. J. 188, 25 (1980).PubMedGoogle Scholar
  5. 5.
    H. Ohkawa, N. Ohishi, and K. Yagi,Anal. Biochem. 95, 351 (1979).PubMedCrossRefGoogle Scholar
  6. 6.
    L. Lalonde, Y. Jean, K. D. Roberts, A. Chapdelaine, and G. Bleau,Clin. Chem. 28, 172 (1982).PubMedGoogle Scholar
  7. 7.
    O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall,J. Biol. Chem. 193, 265 (1951).PubMedGoogle Scholar
  8. 8.
    H. Sies,Am. J. Med. 91 (Suppl. 3C), 31 (1991).CrossRefGoogle Scholar
  9. 9.
    R. A. Sunde,Ann. Rev. Nutr. 10, 451 (1990).CrossRefGoogle Scholar
  10. 10.
    F. Ursini, M. Maiorino, and C. Gregolin,Biochem. Biophys. Acta 839, 62 (1985).PubMedGoogle Scholar
  11. 11.
    L. J. Lawrence, and J. E. Casida,Science 221, 1399 (1983).PubMedCrossRefGoogle Scholar
  12. 12.
    D. J. Ecobichon,Casarett and Doull’s Toxicology, M. O. Amdur, J. Doull, and C. D. Klaassen, eds., Pergamon, New York, pp. 565–622 (1991).Google Scholar
  13. 13.
    P. Krogsgaard-Larsen,Pharmacol. Toxicol. 70, 95 (1992).PubMedCrossRefGoogle Scholar
  14. 14.
    D. E. Pellegrini-Giampietro, G. Cherici, M. Alesiani, V. Carla, and F. Moroni,J. Neurochem. 51, 1960 (1988).PubMedCrossRefGoogle Scholar
  15. 15.
    J. A. Dykens, A. Stern, and E. Trenkner,J. Neurochem. 49, 1222 (1987).PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 1995

Authors and Affiliations

  • F. Hincal
    • 1
  • A. Gürbay
    • 1
  • B. Giray
    • 1
  1. 1.Faculty of Pharmacy, Department of ToxicologyHacettepe UniversityAnkaraTurkey

Personalised recommendations