Journal d’Analyse Mathématique

, Volume 11, Issue 1, pp 285–322 | Cite as

Ratio theorems for random walks I

  • H. Kesten
  • F. Spitzer


Random Walk Independent Random Variable Tauberian Theorem Transient Case Persistent Case 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kai Cai Chung, Markov chains with stationary transition probabilities, Berlin, 1960.Google Scholar
  2. 2.
    K. L. Chung and P. Erdös, Probability limit theorems assuming only the first moment I,Memoir n o 6, Amer. Math. Soc., 1951.Google Scholar
  3. 3.
    K. L. Chung and W. H. J. Fuchs, On the distribution of values of sums of random variables.Memori n o 6, Amer. Math. Soc., 1951.Google Scholar
  4. 4.
    D. A. Darling and M. Kac, On occupation times for Markoff processes,Trans. Amer. Math. Soc. 84 (1957), pp. 444–458.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Gustav Doetsch, Handbuch der Laplace-Transformation, Band I, Basel 1950.Google Scholar
  6. 6.
    William Feller, An introduction to probability theory and its applications, vol I 2nd ed., New York, N. Y., 1957.Google Scholar
  7. 7.
    G. A. Hunt, Some theorems concerning Brownian motion,Trans. Amer. Math. Soc. 81 (1956), pp. 294–319.MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    M. Kac, A class of limit theorems,Trans. Amer. Math. Soc. 84 (1957), pp. 459–471.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    H. Kesten, D. Ornstein and F. Spitzer, A general property or random walk,Bull. Amer. Math. Soc. 68 (1962) pp. 526–528.MATHMathSciNetGoogle Scholar
  10. 10.
    Paul Lévy, Théorie de l'addition des variables aléatoires, 2ième ed. Paris, 1954.Google Scholar
  11. 11.
    Michel Loève, Probability theory, 3rd ed., Princeton, N. J., 1963.Google Scholar
  12. 12.
    Frank Spitzer, A combinatorial lemma and its applications to probability theoryTrans. Amer. Math. Soc. 82, (1956) pp. 323–339.MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Frank Spitzer, Some properties of recurrent random walk,Ill. J. Math. 5 (1961) pp. 234–245.MATHMathSciNetGoogle Scholar
  14. 14.
    Frank Spitzer, Hitting probabilities,J. of Math. and Mech. 11 (1962) pp. 593–614.MATHMathSciNetGoogle Scholar
  15. 15.
    Frank Spitzer, Principles of random walk, to appear.Google Scholar

Copyright information

© Journal d’Analyse Mathématique (B. A. Amirà) 1963

Authors and Affiliations

  • H. Kesten
    • 1
  • F. Spitzer
    • 1
  1. 1.Department of MathematicsCornell UniversityIthacaUSA

Personalised recommendations