Researches on Population Ecology

, Volume 1, Issue 1, pp 15–24 | Cite as

A numerical solution of theVolterra equation for the growth of an animal population accompanying an autotoxic effect

  • Hiroshi Fujita


Growth Curve Mathematical Biology Bacterial Population Rate Equation Population Decline 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Castoldi, L. (1947) Attorno a un problema di biologia mathematica: Il decorso di una infezione per inoculazione di germi patogeni.Atti dell’Accademia Ligure di Scienze e Lettere,5 (1): 1–18.Google Scholar
  2. Hinshelwood, C. 1951. Declice and death of bacterial populations.Nature,167: 666–669.CrossRefPubMedGoogle Scholar
  3. Kostitzin, V. A. (1939)Mathematical biology (George G. Harrap & Co. Ltd., London).Google Scholar
  4. Porter, J. R. (1948)Bacteriol chemistry and physiology (John Wiley & Sons, Inc., New York): 103.Google Scholar
  5. Volterra, V. andD’Ancona, U. (1939)Les associations biologiques au point de vue mathematique (Hermann et Cie, Paris): 22.Google Scholar

Copyright information

© The Society of Population Ecology 1952

Authors and Affiliations

  • Hiroshi Fujita
    • 1
  1. 1.Department of Fisheries, Faculty of AgricultureKyoto UniversityKyotoJapan

Personalised recommendations