Skip to main content
Log in

Global solutions of inhomogeneous Hamilton-Jacobi equations

  • Published:
Journal d’Analyse Mathématique Aims and scope

Abstract

We consider the viscous Hamilton-Jacobi (VHJ) equationu tu=|∇u|p+h(x). For the Dirichlet problem withp>2, it is known thatgradient blow-up may occur in finite time (on the boundary). Whereas considerable effort has been devoted to study the large time behavior of solutions of the equationu tu=g(x,u), whereamplitude blow-up may occur if for instanceg(x,u)u p asu→∞ andp>1, relatively little is known in the case of (VHJ). The aim of this paper is to investigate this question. More precisely, we study the relations between

  1. (i)

    the existence of global classical solutions

  2. (ii)

    the existence of stationary solutions (with gradient possibly singular on the boundary);

and we obtain a precise description of the global dynamics for (VHJ). Namely, we show that (i) implies (ii) and that in this case, all global solutions converge uniformly to the (unique) stationary solution. In the radial case, we prove that, conversely, (ii) implies (i). Moreover, for certain (smooth) functionsh, we obtain the existence of global classical solutions with gradient blowing up in infinite time. For 1p-2 or for the Cauchy problem, all solutions are global, but we establish similar relations between the existence of bounded or locally bounded solutions and the existence of stationary solutions. Our proofs depend on some new gradient estimates of solutions, local and global in space, obtained by Bernstein type arguments. As another consequence of these estimates we prove a parabolic Liouville-type theorem for solutions ofu t\t-Δu=│Δup in ℝNx(\t-\t8,0). Various other results are obtained, including universal bounds for global solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. Alaa and M. Pierre,Weak solutions of some quasiliear elliptic equations with data measures, SIAM J. Math. Anal.24 (1993), 23–35.

    Article  MATH  MathSciNet  Google Scholar 

  2. N. Alikakos, P. Bates and C. Grant,Blow up for a diffusion-advection equation, Proc. Roy. Soc Edinburgh A113 (1989), 181–190.

    MathSciNet  MATH  Google Scholar 

  3. L. Amour and M. Ben-Artzi,Global existence and decay for viscous Hamilton-Jacobi equations, Nonlinear Anal.31, (1998), 621–628.

    Article  MATH  MathSciNet  Google Scholar 

  4. S. Angenent and M. Fila,Interior gradient blow-up in a semilinear parabolic equation, Differ. Integral Equations9 (1996), 865–877.

    MATH  MathSciNet  Google Scholar 

  5. D. Aronson and Ph. Bénilan,Regularité des solutions de l'équation des milieux poreux dans R N, C. R. Acad. Sci. Paris Sér. A-B288 (1979), 103–105.

    MATH  Google Scholar 

  6. J. Arrieta, A. Rodríguez-Bernal and Ph. Souplet,Boundedness of global solutions for nonlinear parabolic equations involving gradient blow-up phenomena. Ann Scuola Norm. Sup. Pisa (5)3 (2004), 1–15.

    MATH  Google Scholar 

  7. K. Asai and N. Ishimura,On the interior derivative blow-up for the curvature evolution of capillary surfaces Proc. Amer. Math. Soc.126 (1998), 835–840.

    Article  MATH  MathSciNet  Google Scholar 

  8. G. Barles and F. Da Lio,On the generalized Dirichlet for viscous Hamilton-Jacobi equations, J. Math. Pures et Appl.83 (2004) 53–75.

    MATH  Google Scholar 

  9. M. Ben-Artzi and H. Koch,Decay of mass for a semilinear parabolic equation, Comm. Partial Differ. Equations24 (1999), 869–881.

    Article  MATH  MathSciNet  Google Scholar 

  10. M. Ben-Artzi, Ph. Souplet and F. Weissler,The local theory for viscous Hamilton-Jacobi equations in Lebesgue spaces, J. Math. Pures Appl.81 (2002), 343–378.

    Article  MATH  MathSciNet  Google Scholar 

  11. S. Benachour and S. Dabuleanu,The mixed Cauchy-Dirichlet problem for a viscous Hamilton-Jacobi equation, Adv. Differ. Equations8 (2003), 1409–1452.

    MATH  MathSciNet  Google Scholar 

  12. S. Benachour, G. Karch and Ph. Laurençot,Asymptotic profiles of solutions to viscous Hamilton-Jacobi equations, J. Math. Pures Appl.83 (2004), 1275–1308.

    MATH  MathSciNet  Google Scholar 

  13. S. Benachour and Ph. Laurençot,Global solutions to viscous Hamilton-Jacobi equations with irregular initial data, Comm. Partial Differ. Equations24 (1999), 1999–2021.

    Article  MATH  Google Scholar 

  14. P. Biler, M. Guedda and G. Karch,Asymptotic properties of solutions of the viscous Hamilton-Jacobi equation, J. Evol. Equ.4 (2004), 75–97.

    Article  MATH  MathSciNet  Google Scholar 

  15. H. Brezis, Th. Cazenave, Y. Martel and A. Ramiandrisoa,Blow up for ut-Δu=g(u) revisited, Adv. Differ. Equations1 (1996), 73–90.

    MATH  MathSciNet  Google Scholar 

  16. X. Cabré and Y. Martel,Weak eigenfunctions for the linearization of extremal elliptic problems J. Funct. Anal.156 (1998), 30–56.

    Article  MATH  MathSciNet  Google Scholar 

  17. G. Conner and C. Grant,Asymptotics of blowup for a convection-diffusion equation with conservation. Diff. Integral Equations9 (1996), 719–728.

    MATH  MathSciNet  Google Scholar 

  18. M. Crandall, P.-L. Lions and P. E. Souganidis,Maximal solutions and universal bounds for some partial differential equations of evolution, Arch. Rational Mech. Anal.105 (1989), 163–190.

    Article  MATH  MathSciNet  Google Scholar 

  19. S. Dabuleanu, PhD Thesis, University of Nancy 1 (2003).

  20. J. W. Dold, V. Galaktionov, A. Lacey and J.-L Vázquez,Rate of approach to a singular steady state in quasilinear reaction-diffusion equations Ann. Scuola Norm. Sup. Pisa Cl. Sci (4)26 (1998), 663–687.

    MATH  MathSciNet  Google Scholar 

  21. M. Fila and G. Lieberman,Derivative blow-up and beyond for quasilinear parabolic equations. Diff. Integral Equations7 (1994), 811–821.

    MATH  MathSciNet  Google Scholar 

  22. Y. Giga,Interior derivative blow-up for quasilinear parabolic equations, Discrete Contin. Dyn. Syst.1 (1995), 449–461.

    Article  MATH  MathSciNet  Google Scholar 

  23. B. Gilding,The Cauchy problem for u t =Δu+|∇u| q, J. Math. Anal. Appl.284 (2003), 733–755.

    Article  MATH  MathSciNet  Google Scholar 

  24. K. Hansson, V. Mazya and I. VerbitskyCriteria of solvability for multidimensional Riccati equations, Ark. Mat.37 (1999), 87–120.

    Article  MATH  MathSciNet  Google Scholar 

  25. A. Haraux, Systèmes dynamiques dissipatifs et applications Recherches en Mathématiques Appliquées, Vol. 17, Masson, Paris, 1991.

    MATH  Google Scholar 

  26. M. Hesaaraki and A. Moameni,Blow-up of positive solutions for a family of nonlinear parabolic equations in general domain in ℝ N. Michigan Math. J.52 (2004), 375–389.

    Article  MATH  MathSciNet  Google Scholar 

  27. S. Kaplan,On the growth of solutions of quasilinear parabolic equations Comm. Pure Appl. Math.16 (1963), 327–343.

    Article  Google Scholar 

  28. M. Kardar, G. Parisi and Y.-C. Zhang,Dynamic scaling of growing interfaces, Phys. Rev. Lett.56 (1986), 889–892.

    Article  MATH  Google Scholar 

  29. J. Krug and H. Spohn,Universality classes for deterministic surface growth, Phys. Rev. A.38 (1988), 4271–4283.

    Article  MathSciNet  Google Scholar 

  30. A. Lacey and D. Tzanetis,Global existence and convergence to a singular steady state for a semilinear heat equation. Proc. R. Soc. Edinb. Sect. A105 (1987), 289–305.

    MathSciNet  MATH  Google Scholar 

  31. A. Lacey and D. Tzanetis,Global unbounded solutions to a parabolic equation, J. Differ. Equations101 (1993), 80–102.

    Article  MATH  MathSciNet  Google Scholar 

  32. O. Ladyzenskaja, V. Solonnikov and N. Uralceva, Linear and Quasilinear Equations of Parabolic Type translations of Mathematical Monographs, Vol. 23., American Mathematical Society, Providence, R. I., 1967.

    Google Scholar 

  33. O. Ladyzenskaja and N. Uralceva,Local estimates for gradients of solutions of non-uniformly elliptic and parabolic equations, Comm. Pure Appl. Math.23 (1970), 677–703.

    Article  MathSciNet  Google Scholar 

  34. Ph. Laurencot and Ph. Souplet,On the growth of mass for a viscous Hamilton-Jacobi equation, J. Analyse Math.89 (2003), 367–383.

    MATH  MathSciNet  Google Scholar 

  35. P. Li and S.-T. Yau,On the parabolic kernel, of the Schrödinger operator, Acta Math.156 (1986), 153–201.

    Article  MathSciNet  Google Scholar 

  36. P.-L. Lions,Résolution de problèmes elliptiques quasilinéaires, Arch. Rational Mech. Anal.74 (1980), 335–353.

    Article  MATH  MathSciNet  Google Scholar 

  37. P.-L. Lions,Generalized solutions of Hamilton-Jacobi Equations, Pitman Research Notes in Math. 69, Boston. Mass.-London. 1982.

  38. P.-L. Lions,Quelques remarques sur les problèmes elliptiques quasilinéaires du second ordre, J. Analyse Math.45 (1985) 234–254.

    MATH  MathSciNet  Google Scholar 

  39. A. Lunardi,Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser, Basel, 1995.

    MATH  Google Scholar 

  40. Y. Martel,Dynamical instability of singular extremal solutions of nonlinear elliptic problems, Adv. Math. Sci. Appl.9 (1999), 163–181.

    MATH  MathSciNet  Google Scholar 

  41. P. Quittner, Ph. Souplet and M. Winkler,Initial blow-up rates and universal bounds for nonlinear heat equations, J. Differ., Equations196 (2004), 316–339.

    Article  MATH  MathSciNet  Google Scholar 

  42. J. Serrin,Gradient estimates for solutions of nonlinear elliptic and parabolic equations, Contributions to nonlinear functional analysis (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1971), Academic Press, New York, 1971, pp. 565–601.

    Google Scholar 

  43. Ph. Souplet,Gradient blow-up for multidimensional nonlinear parabolic equations with general boundary conditions, Differ. Integral Equations15 (2002), 237–256.

    MATH  MathSciNet  Google Scholar 

  44. Ph. Souplet and J. L. Vázquez,Stabilization towards a singular steady state with gradient blow-up for a convection- diffusion problem, Discrete Contin. Dynam. Systems14 (2006), 221–234.

    MATH  Google Scholar 

  45. Ph. Souplet and Q. Zhang,Sharp gradient estimate and Yau's Liouville theorem for the heat equation on noncompact manifolds, Bull. London Math. Soc. (2006), in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Souplet, P., Zhang, Q.S. Global solutions of inhomogeneous Hamilton-Jacobi equations. J. Anal. Math. 99, 355–396 (2006). https://doi.org/10.1007/BF02789452

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02789452

Keywords

Navigation